Asymptotics of the eigenvalues of the Dirichlet-Laplace problem in a domain with thin tube excluded - Archive ouverte HAL
Article Dans Une Revue Quarterly of Applied Mathematics Année : 2016

Asymptotics of the eigenvalues of the Dirichlet-Laplace problem in a domain with thin tube excluded

Résumé

We consider a Laplace problem with Dirichlet boundary condition in a three dimensional domain containing an inclusion taking the form of a thin tube with small thickness. We prove convergence in operator norm of the resolvent of this problem as the thickness goes to 0, establishing that the perturbation on the resolvent induced by the inclusion is not greater than some (negative) power of the logarithm of the thickness. We deduce convergence of the eigenvalues of the perturbed operator toward the limit operator.
Fichier principal
Vignette du fichier
manuscript.pdf (409.83 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01120422 , version 1 (25-02-2015)
hal-01120422 , version 2 (07-04-2016)

Identifiants

  • HAL Id : hal-01120422 , version 2

Citer

Xavier Claeys. Asymptotics of the eigenvalues of the Dirichlet-Laplace problem in a domain with thin tube excluded. Quarterly of Applied Mathematics, 2016, 74 (4), pp.595-605. ⟨hal-01120422v2⟩
372 Consultations
201 Téléchargements

Partager

More