FREE BOUNDARY MINIMAL SURFACES IN THE UNIT 3-BALL - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2015

FREE BOUNDARY MINIMAL SURFACES IN THE UNIT 3-BALL

Résumé

In a recent paper A. Fraser and R. Schoen have proved the existence of free boundary minimal surfaces $\Sigma_n$ in $B^3$ which have genus $0$ and $n$ boundary components, for all $ n \geq 3$. For large $n$, we give an independent construction of $\Sigma_n$ and prove the existence of free boundary minimal surfaces $\tilde \Sigma_n$ in $B^3$ which have genus $1$ and $n$ boundary components. As $n$ tends to infinity, the sequence $\Sigma_n$ converges to a double copy of the unit horizontal (open) disk, uniformly on compacts of $B^3$ while the sequence $\tilde \Sigma_n$ converges to a double copy of the unit horizontal (open) punctured disk, uniformly on compacts of $B^3-\{0\}$.
Fichier principal
Vignette du fichier
FBinB3_FPZ.pdf (378.47 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01119962 , version 1 (24-02-2015)

Identifiants

Citer

Abigail Folha, Frank Pacard, Tatiana Zolotareva. FREE BOUNDARY MINIMAL SURFACES IN THE UNIT 3-BALL. 2015. ⟨hal-01119962⟩
581 Consultations
102 Téléchargements

Altmetric

Partager

More