Learning to Choose : automatic Selection of the Information Retrieval Parameters - Archive ouverte HAL
Communication Dans Un Congrès Année : 2014

Learning to Choose : automatic Selection of the Information Retrieval Parameters

Résumé

In this paper we promote a selective information retrieval process to be applied in the context of repeated queries. The method is based on a training phase in which the meta search system learns the best parameters to use on a per query basis. The training phase uses a sample of annotated documents for which document relevance is known. When an equal-query is submitted to the system, it automatically knows which parameters it should use to treat the query. This Learning to choose method is evaluated using simulated data from TREC campaigns. We show that system performance highly increases in terms of precision (MAP), speci cally for the queries that are di cult to answer, when compared to any unique system con guration applied to all the queries.
Fichier principal
Vignette du fichier
Bigot_13186.pdf (232.09 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01118863 , version 1 (20-02-2015)

Identifiants

  • HAL Id : hal-01118863 , version 1

Citer

Anthony Bigot, Sébastien Dejean, Josiane Mothe. Learning to Choose : automatic Selection of the Information Retrieval Parameters. Spanish Conference on Information Retrieval, Jun 2014, Coruña, Spain. pp. 1-13. ⟨hal-01118863⟩
143 Consultations
94 Téléchargements

Partager

More