A nonlinear finite volume scheme satisfying maximum and minimum principles for diffusion operators - Archive ouverte HAL
Journal Articles International Journal on Finite Volumes Year : 2009

A nonlinear finite volume scheme satisfying maximum and minimum principles for diffusion operators

Abstract

We introduce a new finite volume method for highly anisotropic diffusion operators on triangular cells. The main idea is to calculate the gradient using a nonlinear scheme. For parabolic problems, the resulting global matrix is a strictly diagonally dominant M-Matrix without geometrical constraints on the mesh and restrictive conditions on the anisotropy ratio. We verify the accuracy of the method by comparing our computed solutions with analytical solutions. The efficiency of the algorithm is demonstrated by comparing it with numerical schemes which do not satisfy discrete minimum and maximum principles.
Fichier principal
Vignette du fichier
vfpmmdfinal.pdf (599.79 Ko) Télécharger le fichier
Origin Files produced by the author(s)
Loading...

Dates and versions

hal-01116968 , version 1 (16-02-2015)

Identifiers

  • HAL Id : hal-01116968 , version 1

Cite

Christophe Le Potier. A nonlinear finite volume scheme satisfying maximum and minimum principles for diffusion operators. International Journal on Finite Volumes, 2009, pp.1-20. ⟨hal-01116968⟩

Collections

CEA DEN ISAS
415 View
262 Download

Share

More