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Abstract

We introduce a new finite volume method for highly anisotropic diffusion

operators on triangular cells. The main idea is to calculate the gradient

using a nonlinear scheme. For parabolic problems, the resulting global

matrix is a strictly diagonally dominant M-Matrix without geometrical

constraints on the mesh and restrictive conditions on the anisotropy

ratio. We verify the accuracy of the method by comparing our computed

solutions with analytical solutions. The efficiency of the algorithm is

demonstrated by comparing it with numerical schemes which do not

satisfy discrete minimum and maximum principles.
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1 Introduction

In the framework of nuclear waste disposal simulation, we are interested in a trans-
port model in porous media which can be described by a convection-diffusion-
dispersion equation applied on highly anisotropic heterogeneous geological layers.
For the convective term, we use a classical upwind scheme where the physical phe-
nomenon is convection dominated, and a centered scheme where the physical phe-
nomenon is diffusion dominated. The key property of this convection scheme is that
it satisfies maximum and minimum principles. Therefore, it is natural to seek an
approximation to the diffusive-dispersive term which has also these properties.

We are interested in constructing a cell-centered scheme which satisfies the fol-
lowing :

• it is second order accurate for smooth solutions.

• it takes into account heterogeneous anisotropic tensors.

• it takes into account distorted meshes.



Finite volume scheme satisfying maximum and minimum principles

• it satisfies discrete minimum and maximum principles (DMMP) without ge-
ometric constraints on the mesh and without conditions on the anisotropy
ratio.

The crucial property is the fourth property. It is very important for diffusion terms
in modelling two-phase flows in porous media [NOR 05] and for coupling transport
equation with a chemical model.
To our knowledge, there are no linear schemes satisfying all of the above require-
ments. For example, for classical finite elements, it is explained in [CIA 73, KOR 00],
that for the Laplacian, the resulting global matrix associated with the scheme is an
M-Matrix if some geometrical constraints are satisfied. We can also cite a recent
work described in [LP 09] where a linear scheme satisfying a maximum principle
for anisotropic diffusion operators on distorted grids is developed. This method is
generally first order accurate for smooth solutions.
However, a few non-linear methods have been proposed. In [BUR 04], a non lin-
ear correction of a finite linear element scheme is developed. But, heterogeneous
anisotropic tensors are not taken into account. In [BER 06], an interesting non-linear
method is proposed for homogeneous isotropic diffusion. Unfortunately, the posi-
tivity properties are obtained under restrictive geometric constraints. In [LP 05b],
we proposed a cell-centered finite volume discretization for the diffusion operator.
We showed the robustness and the accuracy of this algorithm in comparison with
analytical solutions. This scheme satisfies either the minimum or the maximum
principle but not the both simultaneously. This was extended in [KAP 07, LIP 07,
LIP 09, YUA 08] on polygonal meshes and tetrahedrons.
In this paper, we construct a new algorithm which satisfies DMMP for any anisotropic
tensor on unstructured triangular cells.
The outline of the paper is as follows. After a short presentation, we describe in
subsection 2.1 the case where the diffusion tensor is equal to the identity matrix.
Then, in subsection 2.2, we extend the algorithm to the heterogeneous anisotropic
case. In section 3, we present a few numerical results and we conclude in section 4.

2 Presentation

Let Ω be an open bounded convex subset of R2. We consider the following problem





~q = D~∇C
ω
∂C

∂t
= div~q on Ω ∀t > 0

(1)

with

• ω, the porosity

• C, the radioactive element concentration

• D, a symmetric definite positive matrix

We also impose an initial condition and Dirichlet boundary conditions.
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2.1 Isotropic homogeneous case: D = Id

We consider a grid T made up of Nma triangular cells and Nf boundary edges. We
define B = {Xj{1≤j≤Nma+Nf }

} as the set of the points which are the intersection of the

angle bisectors of each triangular cell and the points located at the midpoints of the
edges of the boundary. For any node Oi of the grid (not located on the boundary),
there exists a triangular cell (XTi,1 , XTi,2 , XTi,3) (with XTi,jj=1,2,3

∈ B) so that the
node Oi is inside this triangular cell.
Remark 1: as Ω is convex, this triangular cell always exists. It is sufficient to
take the triangular cells with vertices located at the midpoints of the edges of the
boundary. In practice, we choose the points closest to Oi. So, there exists three
positive or zero coefficients λi,j;j=1,2,3 with

∑
{1≤j≤3}λi,j = 1 (Figure 1), such that

∑
{1≤j≤3}λi,j ~OiXTi,j = ~0.

Remark 2: several triangular cells can exist that satisfy the desired property. So,
we can introduce several points XTi,j ,j=1,..,N and λi,j;j=1,..,N (with N > 3) such that∑
{1≤j≤N}λi,j ~OiXTi,j = ~0.

Remark 3: an other solution consists in integrating div ~∇x = 0 and div~∇y = 0 on
a disk around the node Oi. We obtain:

∑
{j∈VOi}

λi,j ~OiXTi,j = ~0 with λi,j ≥ 0,

where we define VOi as the set of all the triangular cells around the point Oi. In
this case, we do not use the assumption that the computational domain Ω is convex.
Unfortunately, it seems difficult to generalize this method to heterogeneous cases.

PSfrag replacements

XTi,1

XTi,2

XTi,3

Oi

Figure 1: Grid composed of triangular cells

We use the same notations as that described in [EYM 99]. For T ∈ T , we define
(Figure 2):

• S(T ), the area of the triangular cell T , XT the intersection of its angle bisec-
tors, cj(T ), j = 1, 2, 3 the sides of T .

• ~nT,j the outward directed normal vector to cj(T ) to T with the same length
as cj(T ), for j = 1, 2, 3.

Let Aext be the set of the edges belonging to ∂Ω, Aint, the set of interior edges. For
a ∈ Aint, we define:
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PSfrag replacements

~n−1,a

~n+
1,a

~n−2,a

~n+
2,a

O1,a

O2,a

~na

XT+
a

XT−a

Figure 2: Homogeneous case

• T+
a , T−a two triangular cells which share a common edge a, O1,a, O2,a the two

nodes of the edge a.

• ~na, the normal vector to the segment O1,aO2,a such as ~na is outward to T+
a

with the same length as O1,aO2,a.

• ~n+
1,a, ~n

+
2,a, ~n

−
1,a and ~n−2,a the normal vectors to the edges XT+

a
O1,a, XT+

a
O2,a,

XT−a
O1,a and XT−a

O2,a, respectively with the same length.

• PTi,a the triangular cell (Oi,a, XT+
a
, XT−a

) with SFi,a its area and ∂PTi,a its
boundary.

For a ∈ Aext, we also define:

• PTa the triangular cell (O1,a, XT+
a
, O2,a) with SFa its area and ∂PTa its bound-

ary.

We use SFi,a~qi,a to denote the value of
∫
PTi,a

~qdΩ if a ∈ Aint; we let SFa~qa denote

the value of
∫
PTa

~qdΩ on PTa if a ∈ Aext and we let CT denote the value of the
concentration C at the point XT . We approximate the value of the concentration C
at the point Oi,a with the expression COi,a =

∑
{1≤j≤3}λi,jCTi,j .

Calculation of the flux ~q · ~na
For an edge a belonging to Aint, the integration of the first equation of system (1)
on PTi,a using Green’s formula leads to, for i=1,2:

∫

PTi,a

~qdΩ =

∫

PTi,a

~∇CdΩ =

∫

∂PTi,a

C~ndΓ (2)

Using a formula that is second order in space, we get, for i = 1, 2:

~qi,a =
1

2SFi,a
COi,a(~n+

i,a + ~n−i,a) +
1

2SFi,a
(−CT−a ~n

+
i,a − CT+

a
~n−i,a) (3)

We denote λ1 =
(~n+

1,a + ~n−1,a) · ~na
2SF1,a

, λ2 =
(~n+

2,a + ~n−2,a) · ~na
2SF2,a

, λ3 = −
~n+

1,a · ~na
2SF1,a

and

λ4 =
~n−2,a · ~na
2SF2,a

.
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The terms ~q1,a · ~na and ~q2,a · ~na can be written:

~q1,a · ~na = λ1(CO1,a − CT+
a

) + λ3(CT−a − CT+
a

) (4)

and
~q2,a · ~na = λ2(CO2,a − CT−a ) + λ4(CT−a − CT+

a
) (5)

We remark that λ1λ2 ≤ 0. Let us assume: λ1 ≥ 0 and λ3 ≤ λ4. If CO1,a − CT+
a

= 0
(resp. CO2,a−CT−a = 0), we choose ~q· ~na = ~q1,a ·~na (resp. ~q· ~na = ~q2,a ·~na). Otherwise,
using the same kind of combination described in [BER 06] and after discussion with
[GAL 06], we define:

~q·~na =
|λ2(CO2,a − CT−a ) + (λ4 − λ3)(CT−a − CT+

a
)|~q1,a · ~na + |λ1(CO1,a − CT+

a
)|~q2,a · ~na

|λ2(CO2,a − CT−a ) + (λ4 − λ3)(CT−a − CT+
a

)|+ |λ1(CO1,a − CT+
a

)|
(6)

In any case, ~q·~na can be written: ~q·~na = µ1,a~q1,a ·~na+µ2,a~q2,a ·~na with µ1,a+µ2,a = 1.

Remark 1: If |~q1,a · ~na|+ |~q2,a · ~na| 6= 0, an other choice could be:

~q · ~na =
|~q2,a · ~na|~q1,a · ~na + |~q1,a · ~na|~q2,a · ~na

|~q2,a · ~na|+ |~q1,a · ~na|
(7)

Remark 2: any combination (µ1,a, µ2,a) with µ1,a + µ2,a = 1, and
~q · ~na = µ1,a~q1,a · ~na + µ2,a~q2,a · ~na gives a consistent formulation. For example,
µ1,a = 0.5 and µ2,a = 0.5 leads to the so-called ”diamond” scheme ([COU 99]).
Remark 3: if λ1 < 0, the roles of ~q1,a · ~na and ~q2,a · ~na are reversed. If λ4 ≤ λ3, we
define:

~q·~na =
|λ2(CO2,a − CT−a )|~q1,a · ~na + |λ1(CO1,a − CT+

a
) + (λ3 − λ4)(CT−a − CT+

a
)|~q2,a · ~na

|λ2(CO2,a − CT−a )|+ |λ1(CO1,a − CT+
a

) + (λ3 − λ4)(CT−a − CT+
a

)|
(8)

If the edge a belongs to Aext, we integrate the first equation of system (1) on the
triangular cell PTa and we impose the values of the boundary conditions at the
points O1,a and O2,a. We get:

~q · ~na = ~qa · ~na = { 1

2SFa
CTa+ (~n+

1,a +~n+
2,a) +

1

2SFa
(−CO1,a~n

+
2,a−CO2,a~n

+
1,a)} · ~na (9)

Calculation of the main unknown CT
Let us integrate the mass conservation equation (the second equation of system (1))
over T . We get:

∫

T
ω
∂C

∂t
dΩ = S(T )ω

∂CT
∂t

=

∫

T
div~qdΩ =

∫

∂T
~q.~ndΓ =

j=3∑

j=1

~q.~nT,j (10)
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2.2 Properties of the algorithm

First, we use the following definition:
a matrix A is a strictly diagonally dominant M-Matrix if and only if its coefficients
aij satisfy : 




aii > 0
aij ≤ 0

akk >
∑

j 6=k |akj | ∀k
(11)

We let SF denote the diagonal matrix with coefficients equal to the areas of the
grid, ∆t the time step, Cn = C(n∆t) the vector of the main unknowns and A(Cn)

the discretization matrix of divD~∇ of dimension Nma. We choose an implicit time
scheme. The discretization of the equation (10) leads to:
(SFω −∆tA(Cn+1))Cn+1 = SFωCn and we denote M = SFω −∆tA(Cn+1).
Proposition 2. For any triangular cell, the matrix M is a strictly diagonally
dominant M-matrix.
Proof
If the edge a ∈ Aint, and{
λ1(CO1,a − CT+

a
)
}{

λ2(CO2,a − CT−a ) + (λ4 − λ3)(CT−a − CT+
a

)
}
> 0, equality (6)

becomes:





~q · ~na =
2λ1(CO1,a − CT+

a
)|λ2(CO2,a − CT−a ) + (λ4 − λ3)(CT−a − CT+

a
)|

|λ2(CO2,a − CT−a ) + (λ4 − λ3)(CT−a − CT+
a

)|+ |λ1(CO1,a − CT+
a

)|

+λ3(CT−a − CT+
a

) =

2|λ1(CO1,a − CT+
a

)|
{
λ2(CO2,a − CT−a ) + (λ4 − λ3)(CT−a − CT+

a
)
}

|λ2(CO2,a − CT−a ) + (λ4 − λ3)(CT−a − CT+
a

)|+ |λ1(CO1,a − CT+
a

)|

+λ3(CT−a − CT+
a

)

(12)

If the edge a ∈ Aint, and{
λ1(CO1,a − CT+

a
)
}{

λ2(CO2,a − CT−a ) + (λ4 − λ3)(CT−a − CT+
a

)
}
≤ 0, the flux ~q.~na

can be written :
~q · ~na = λ3(CT−a − CT+

a
)

In any case, we deduce that the flux ~q · ~na can be written:

~q·~na = f1(CO1,a , CO2,a , CT−a , CT+
a

)(CT−a −CT+
a

)+g1(CO1,a , CO2,a , CT−a , CT+
a

)(CO1,a−CT+
a

)

with f1 and g1 two positive functions. This is the flux coming from the cell T+
a .

Moreover, the flux ~q · (−~na) can be written:

~q·(−~na) = f2(CO1,a , CO2,a , CT−a , CT+
a

)(CT+
a
−CT−a )+g2(CO1,a , CO2,a , CT−a , CT+

a
)(CO2,a−CT−a )

International Journal on Finite Volumes 6
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with f2 and g2 two positive functions. This is the flux coming from the cell T−a .
If a ∈ Aext, ~q · ~na can be rewritten:

~q · ~na = f3(CO1,a − CT+
a

) + f4(CO2,a − CT+
a

)

with f3 =
−~n+

2,a · ~na
2SFa

and f4 =
−~n+

1,a · ~na
2SFa

which are also positive functions.

Let V (T+
a ) be the stencil used to calculate ~q · ~na and let V (T−a ) be the stencil used

to calculate ~q · (−~na).
In any case, we get ~q · ~na =

∑
j∈V (T+

a ) f5,j(Cj − CT+
a

) and

~q · (−~na) =
∑

j∈V (T−a ) f6,j(Cj − CT−a ), where f5,j and f6,j are deduced from the
functions f1 through f4. We conclude the off-diagonal entries of the matrix M
are negative. Moreover, for all cells, the diagonal term is strictly greater than the
sum of off-diagonal entries because the coefficients of the diagonal matrix SF are
strictly positive. We conclude that the matrix M is a strictly diagonally dominant
M-Matrix. �
Remark 1 The flux approximation is consistent because we only use a second order
in space formula.
Remark 2 Using properties of strictly diagonally dominant M-matrices, the previous
scheme, denoted VFPMMD, satisfies discrete maximum and minimum principles.
Moreover, the calculated solution has no local extrema.

2.3 Anisotropic heterogeneous case

PSfrag replacements

X ′
T+
a

D
0.5

T+
a
~n2

D
0.5

T+
a
~n1

D
0.5

T+
a
~na

D
0.5

T+
a
~n+

2,a

D
0.5

T+
a
~n+

1,a

O′2,a

O′3

O1,a

O2,a

O3

XT+
a

~n+
1,a

~n+
2,a

~n2

~n1

~na

XT−a

P1

P ′1

Figure 3: Image of a triangular cell by the application R(−π
2 )D

0.5

T+
a
R(π2 )

We let DT+
a

denote the value of

∫
T+
a
DdΩ∫

T+
a
dΩ

and R(θ) the rotation of angle θ.

Proposition 3. There exists one point XT+
a

inside each triangular cell T+
a ∈ T and

International Journal on Finite Volumes 7
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a point P1 (respectively P2 and P3) between the two nodes of O1,a, O2,a (respectively

O2,a, O3 and O3, O1,a) such that : R(π2 ) ~O1,aP1.DT+
a
R(π2 ) ~XT+

a
P1 = 0 (respectively

R(π2 ) ~O2,aP2.DT+
a
R(π2 ) ~XT+

a
P2 = 0 and R(π2 ) ~O3P3.DT+

a
R(π2 ) ~XT+

a
P3 = 0)

Proof
We consider a triangular cell T+

a with vertices O1,a, O2,a, O3. Since the tensor DT+
a

is symmetric positive definite, we denote D
0.5

T+
a

, such that DT+
a

=

{
D

0.5

T+
a

}2

, with

positive eigenvalues. Let R(−π
2 )D

0.5

T+
a
R(π2 )T+

a be the image of T+
a with vertices

O1,aO
′
2,aO

′
3 which satisfies (Figure 3):

~O1,aO′2,a = R(−π
2 )D

0.5

T+
a
R(π2 ) ~O1,aO2,a and ~O1,aO′3 = R(−π

2 )D
0.5

T+
a
R(π2 ) ~O1,aO3.

The point X ′
T+
a

, which is the center of the circle inscribed in the triangular cell

O1,aO
′
2,aO

′
3, satisfies the following equality:

~O1,aX ′T+
a

=
~O1,aO′2,a|O1,aO

′
3|+ ~O1,aO′3|O1,aO

′
2,a|

|O′2,aO′3|+ |O1,aO′3|+ |O1,aO′2,a|
.

We define the point XT+
a

as the inverse image of the point X ′
T+
a

.

It satisfies the equality:

~O1,aXT+
a

= R(
π

2
)D
−0.5

T+
a
R(−π

2
) ~O1,aX ′T+

a
.

This can also be written:

~O1,aXT+
a

=
~O1,aO2,a|O1,aO

′
3|+ ~O1,aO3|O1,aO

′
2,a|

|O′2,aO′3|+ |O1,aO′3|+ |O1,aO′2,a|
.

Since the values
|O1,aO′3|

|O′2,aO′3|+|O1,aO′3|+|O1,aO′2,a
and

|O1,aO′2,a|
|O′2,aO′3|+|O1,aO′3|+|O1,aO′2,a

are positive,

the point XT+
a

is inside the triangular cell T+
a .

Moreover, there exists a point P ′1 between the two nodes of O1,aO
′
2,a such that

~O1,aP ′1.
~X ′
T+
a
P ′1 = 0, using properties on intersections of angle bisectors of a trian-

gular cell. Let be P1 the inverse image of the point P ′1. Using properties of linear
applications, the point P1 is between the two nodes of O1,aO2,a. Then, we obtain
the equalities:

R(−π
2 )D

0.5

T+
a
R(π2 ) ~O1,aP1.R(−π

2 )D
0.5

T+
a
R(π2 ) ~XT+

a
P1 = 0.

Using matrix notations, we get :
t{Rm(−π

2 )D
0.5

m,T+
a
Rm(π2 )O1,aP1}Rm(−π

2 )D
0.5

m,T+
a
Rm(π2 )XT+

a
P1 = 0

where we denote t the conjugate, O1,aP1, XT+
a
P1 the components of ~O1,aP1, ~XT+

a
P1,

Rm the matrix associated with the application R, and D
0.5

m,T+
a

the matrix associated

with the application D
0.5

T+
a

.
Then, we obtain :
t(Rm(π2 )O1,aP1)D

0.5

m,T+
a

tRm(−π
2 )Rm(−π

2 )D
0.5

m,T+
a
Rm(π2 )XT+

a
P1 = 0

The equality becomes :

International Journal on Finite Volumes 8
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t(Rm(π2 )O1,aP1)Dm,T+
a
Rm(π2 )XT+

a
P1 = 0.

We finally obtain :

R(π2 ) ~O1,aP1.DT+
a
R(π2 ) ~XT+

a
P1 = 0. Using the same kind of calculations, we show

there exists two points P2 en P3 satisfying : R(π2 ) ~O2,aP2.DT+
a
R(π2 ) ~XT+

a
P2 = 0 and

R(π2 ) ~O3P3.DT+
a
R(π2 ) ~XT+

a
P3 = 0. �

Finally, let us note that we also obtain the inequalities :
R(π2 ) ~O1,aX ′T+

a
.R(π2 ) ~O1,aO′2,a ≥ 0

Using matrix notations, we get :
t{D

0.5

m,T+
a
Rm(π2 )O1,aXT+

a
}D

0.5

m,T+
a
Rm(π2 )O1,aO2,a ≥ 0.

This inequality becomes :
t(Rm(π2 )O1,aXT+

a
)D

0.5

m,T+
a
D

0.5

m,T+
a
Rm(π2 )O1,aO2,a ≥ 0, which can be rewritten :

R(π2 ) ~O1,aXT+
a
.DT+

a
R(π2 ) ~O1,aO2,a ≥ 0.

which can be rewritten: ~n+
1,a ·DT+

a
~na ≤ 0

Using the same kind of calculations, we also get : ~n+
2,a ·DT+

a
~na ≤ 0 .

PSfrag replacements
~n−1,a

~n+
1,a

~n−2,a

~n+
2,a

~n−a

~n+
a

O1,a

O2,a

Ma

~na

XT+
a

XT−a

Figure 4: Heterogeneous case

The set B is now defined as the set of points XT defined in proposition 3 and
with the points located at the midpoints of the edges of the boundary.
Calculation of the gradients
We introduce the additional following notations:

• the point Ma is the point on the edge O1,a, O2,a defined in proposition 3.
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• SF+
i,a (resp. SF−i,a) the area of the triangular cellOi,aXT+

a
Ma (resp. Oi,aXT−a

Ma).

• Ci,a the value of the concentration at the point Ma associated with Oi,a,
SF+

i,aq
+
i,a (resp. SF−i,aq

−
i,a) the value of the vector

∫
Oi,aXT+

a
Ma

~qdΩ (resp.
∫
Oi,aXT−a

Ma
~qdΩ).

Using a formula that is second order in space, equation (3) becomes for i = 1:





D
−1

T
+
a
~q+

1,a =
1

2SF+
1,a

(CT+
a
− C1,a)~n

+
1,a +

1

2SF+
1,a

(CT+
a
− CO1,a)~n+

a

D
−1

T−a ~q
−
1,a =

1

2SF−1,a
(CT−a − C1,a)~n

−
1,a +

1

2SF−1,a
(CT−a − CO1,a)~n−a

(13)

and for i = 2:




D
−1

T+
a
~q+

2,a =
1

2SF+
2,a

(CT+
a
− C2,a)~n

+
2,a −

1

2SF+
2,a

(CT+
a
− CO2,a)~n+

a

D
−1

T−a ~q
−
2,a =

1

2SF−2,a
(CT−a − C2,a)~n

−
2,a −

1

2SF−2,a
(CT−a − CO2,a)~n−a

(14)

Calculation of Ci,a
We delete the additional unknowns Ci,a by imposing flux continuity, that is to say,

~q+
i,a ·~na = ~q−i,a ·~na. Since ~na ·DT+

a
~n+
a = 0 using the definition of Ma, the concentration

C1,a satisfies:





(
1

SF−1,a
~na ·DT−a

~n−1,a −
1

SF+
1,a

~na ·DT+
a
~n+

1,a)C1,a =

− 1

SF+
1,a

~na ·DT+
a
~n+

1,aCT+
a

+
1

SF−1,a
~na ·DT−a

~n−1,aCT−a +
1

SF−1,a
~na ·DT−a

~n−a (CT−a − CO1,a)

(15)
Moreover, the concentration C2,a satisfies:





(
1

SF−2,a
~na ·DT−a

~n−2,a −
1

SF+
2,a

~na ·DT+
a
~n+

2,a)C2,a =

− 1

SF+
2,a

~na ·DT+
a
~n+

2,aCT+
a

+
1

SF−2,a
~na ·DT−a

~n−2,aCT−a −
1

SF−2,a
~na ·DT−a

~n−a (CT−a − CO2,a)

(16)

Using properties on B, we get the following inequalities: ~na · DT+
a
~n+
i,a ≤ 0 and

~na ·DT−a
~n−i,a ≥ 0. We conclude that C1,a and C2,a can be simplified in the following

way:
C1,a = α1CT+

a
+ β1CT−a + γ1CO1,a

and
C2,a = α2CT+

a
+ β2CT−a + γ2CO2,a
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with α1, α2, β1, β2 positive coefficients, γ1γ2 ≤ 0, α1 + β1 + γ1 = 1 and
α2 + β2 + γ2 = 1.
Calculation of the flux ~q · ~na
We conclude that the flux ~q1,a · ~na and ~q2,a · ~na can be written in the following
way:

~q1,a · ~na = − 1

SF+
1,a

~na ·DT+
a
~n+

1,a

{
β1(CT−a − CT+

a
) + γ1(CO1,a − CT+

a
)
}

and

~q2,a · ~na = − 1

SF+
2,a

~na ·DT+
a
~n+

2,a

{
β2(CT−a − CT+

a
) + γ2(CO2,a − CT−a )

}
.

We rewrite these equalities as

~q1,a · ~na = λ′1(CO1,a − CT+
a

) + λ′3(CT−a − CT+
a

)

and
~q2,a · ~na = λ′2(CO2,a − CT−a ) + λ′4(CT−a − CT+

a
) .

with λ′1 = − 1

SF+
1,a

~na ·DT+
a
~n+

1,aγ1, λ′2 = − 1

SF+
2,a

~na ·DT+
a
~n+

2,aγ2,

λ′3 = − 1

SF+
1,a

~na ·DT+
a
~n+

1,aβ1 and λ′4 = − 1

SF+
2,a

~na ·DT+
a
~n+

2,aβ2.

Let us assume that λ′1 ≥ 0 (if λ′1 ≤ 0, the roles of ~q1,a ·~na and ~q2,a ·~na are reversed).
We recognize the same kind of equalities described in the homogeneous case for
equations (4) and (5). The important point is that λ′3 and λ′4 are positive coefficients
and that λ′1λ

′
2 ≤ 0. For example, if λ′3 ≤ λ′4, we can choose for a ∈ Aint, ~q · ~na in

the form:

~q·~na =
|λ′2(CO2,a − CT−a ) + (λ′4 − λ′3)(CT−a − CT+

a
)|~q1,a · ~na + |λ′1(CO1,a − CT+

a
)|~q2,a · ~na

|λ′2(CO2,a − CT−a ) + (λ′4 − λ′3)(CT−a − CT+
a

)|+ |λ′1(CO1,a − CT+
a

)|
(17)

As the flux can be written in the same way as in the homogeneous case, the resulting
global matrix is also a strictly diagonally dominant M-matrix. We conclude that
the scheme satisfies minimum and maximum principles without conditions on the
tensor.

2.4 Discrete system

2.4.1 Implicit scheme

We solve the equation (10) : (SFω −∆tA(Cn+1))Cn+1 = SFωCn. We use a fixed
point algorithm to treat the non linearity. We get:

(SFω −∆tA(Ci))Ci+1 = SFωCi

where i is a fixed point iteration.
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Method 1
We choose to calculate the following fluxes:

~qi+1·~na =
|λ2(CiO2,a

− Ci
T−a

) + (λ4 − λ3)(Ci
T−a
− Ci

T+
a

)|~qi+1
1,a · ~na + |λ1(CiO1,a

− Ci
T+
a

)|~qi+1
2,a · ~na

|λ2(CiO2,a
− Ci

T−a
) + (λ4 − λ3)(Ci

T−a
− Ci

T+
a

)|+ |λ1(CiO1,a
− Ci

T+
a

)|
(18)

For any iteration of the chosen algorithm, these fluxes are consistent because they
can be written in the following way:

~qi+1 · ~na = (θia~q
i+1
1,a · ~na) + ((1.− θia)~qi+1

2,a · ~na)

Moreover, for any iteration, the scheme is locally conservative. However, minimum
and maximum principles are satisfied once the convergence criterion is achieved. In
some cases, one iteration in the fixed point algorithm can be sufficient to obtain the
desired properties.
Note: this is the method we use in the numerical results.
Method 2
Another technique consists of inverting a strictly diagonally dominant M-Matrix at
any iteration and the local conservation and the consistence of the scheme is obtained
once the convergence of the algorithm is achieved. For any iteration, minimum and
maximum principles are satisfied. We calculate two fluxes at each face which can be
written:





~q1,a · ~na = λ3(Ci+1

T−a
− Ci+1

T+
a

) + 2λ1coef1(Ci+1
O1,a
− Ci+1

T+
a

)

if
{
λ1(CiO1,a

− Ci
T+
a

)
}{

λ2(CiO2,a
− Ci

T−a
) + (λ4 − λ3)(Ci

T−a
− Ci

T+
a

)
}
> 0

~q1,a · ~na = λ3(Ci+1

T−a
− Ci+1

T+
a

)

if
{
λ1(CiO1,a

− Ci
T+
a

)
}{

λ2(CiO2,a
− Ci

T−a
) + (λ4 − λ3)(Ci

T−a
− Ci

T+
a

)
}
≤ 0

(19)



~q2,a · ~na = λ3(Ci+1

T−a
− Ci+1

T+
a

) + 2coef2

{
λ2(Ci+1

O2,a
− Ci+1

T−a
) + (λ4 − λ3)(Ci+1

T−a
− Ci+1

T+
a

)
}

if
{
λ1(CiO1,a

− Ci
T+
a

)
}{

λ2(CiO2,a
− Ci

T−a
) + (λ4 − λ3)(Ci

T−a
− Ci

T+
a

)
}
> 0

~q2,a · ~na = λ3(Ci+1

T−a
− Ci+1

T+
a

)

if
{
λ1(CiO1,a

− Ci
T+
a

)
}{

λ2(CiO2,a
− Ci

T−a
) + (λ4 − λ3)(Ci

T−a
− Ci

T+
a

)
}
≤ 0

(20)
where

coef1 =
|λ2(CiO2,a

− Ci
T−a

) + (λ4 − λ3)(Ci
T−a
− Ci

T+
a

)|
|λ2(CiO2,a

− Ci
T−a

) + (λ4 − λ3)(Ci
T−a
− Ci

T+
a

)|+ |λ1(CiO1,a
− Ci

T+
a

)|

and

coef2 =
|λ1(CiO1,a

− Ci
T+
a

)|
|λ2(CiO2,a

− Ci
T−a

) + (λ4 − λ3)(Ci
T−a
− Ci

T+
a

)|+ |λ1(CiO1,a
− Ci

T+
a

)|
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2.4.2 Semi-implicit scheme

We solve the following equation:

(SFω −∆tA(Cn))Cn+1 = SFωCn

This scheme corresponds to one iteration in the fixed point algorithm described
previously. If we use the method 2, we obtain minimum and the maximum principles
but the scheme is convergent if the time step ∆t is small enough.

2.5 Generalization to 3 dimensions

The scheme presented in [LP 05b] have been developed in [KAP 07] in 3 dimensions.
Using the same kind of method, it should be easy to generalize the VFPMMD scheme
with tetrahedrons.

3 Numerical results

3.1 Stationary case

In order to evaluate the accuracy of the scheme, let us consider the following elliptic
problem:

{
div(D~∇C) = −S on Ω =]0, 0.5[×]0, 0.5[
C = sin(πx)sin(πy) for (x, y) ∈ ∂Ω

with D =

(
y2

1 + εx2
1 −(1− ε)x1y1

−(1− ε)x1y1 x2
1 + εy2

1

)

(21)
and
{
S = sin(πx)sin(πy)((1 + ε)π2(x2

1 + y2
1)) + cos(πx)sin(πy)((1− 3ε)πx1)

+sin(πx)cos(πy)((1− 3ε)πy1) + cos(πx)cos(πy)(2π2(1− ε)x1y1)
(22)

where x1 = x+10−3 and y1 = y+10−3. The parameter ε is equal to 10−3. Calculating
the eigenvalues (y2

1 +x2
1) and ε(y2

1 +x2
1), it is clear that the anisotropy ratio is equal to

103. The analytical solution can be written: C = sin(πx)sin(πy). We consider five
grids, made up of about 30 cells (the first) to 38000 cells (the fifth). To treat the non-
linearity, we perform a few iterations of a fixed point algorithm. The convergence
criterion is achieved when the relative difference in L2 norm between two iterations
is less than 10−5. Since S is negative, the scheme satisfies the minimum principle if
and only if the computed solution is positive and if no local minima appear. We show
in Table 2 the L2 errors for C with respect to the analytical solution, the number
of iterations (nit) in the fixed point algorithm, and the percentage of local minima
(nlm) as a function of the discretization step h for unstructured triangular cells. We
notice that the order in space of the method tends toward 2. We check that the
solution has no local minima. We note a small loss of precision with respect to the
VFMON scheme ([LP 05b]) which is of order 2 in space on this computation (Table
1). Let us recall, that this scheme satisfies the minimum or the maximum principle
but not the both simultaneously. Moreover, we also show the results obtained with
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a non-monotone linear scheme, the so-called ”diamond” scheme ([COU 99]) (Table
3). We calculate the flux ~q · ~na in the following way:

~q · ~na = (0.5~q1,a · ~na) + (0.5~q2,a · ~na)

We notice the scheme is of order 2 in space. It is more accurate than the VFMON
scheme. However, we observe a few oscillations with amplitudes ranging from 10−3

(third grid) to 10−5 for the fifth grid. Finally, we performed the results obtained
with one iteration in the fixed point algorithm (Table 4). Even though the fixed
point algorithm has not converged, we notice that the solution has no local minima.
So, sometimes, it is sufficient to perform only a few iterations to obtain the desired
properties.

h 1
8

1
16

1
32

1
64

1
128

1
256

L2 error 4.2× 10−2 1.0× 10−2 2.7× 10−3 7.2× 10−4 1.6× 10−4 4.0× 10−5

Table 1: L2 error as a function of the discretization step for the VFMON scheme

h 1
8

1
16

1
32

1
64

1
128

1
256

L2 error 4.6× 10−2 1.4× 10−2 4.14× 10−3 1.13× 10−3 4× 10−4 1× 10−4

nit 15 45 17 19 26 10
nlm 0 0 0 0 0 0

Table 2: L2 error, number of iterations in the fixed point algorithm and percentage
of local minima as a function of the discretization step for the VFPMMD scheme

h 1
8

1
16

1
32

1
64

1
128

1
256

L2 error 2.8× 10−2 8.6× 10−3 1.8× 10−3 4.95× 10−4 7.7× 10−5 2× 10−5

nlm 0 0 1.7× 10−1 4.2× 10−2 1.0× 10−2 2.6× 10−3

Table 3: L2 error and percentage of local minima as a function of the discretization
step for the linear scheme

h 1
8

1
16

1
32

1
64

1
128

1
256

L2 error 4.8× 10−2 1.05× 10−2 2.55× 10−3 5.9× 10−4 1.0× 10−4 3.0× 10−5

nlm 0 0 0 0 0 0

Table 4: L2 error and percentage of local minima as a function of the discretization
step for the VFPMMD scheme
(1 iteration)

3.2 Stationary solution using boundary conditions with steep gra-
dients

To show the efficiency of the method, we consider test 3 described in [HER 08]. The
computational domain is the square ]0, 1.0[×]0, 1.0[. We choose

D = Rθ

(
1 0
0 δ

)
Rθ
−1
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where Rθ is the rotation of angle θ = 40 degrees. The source term S is equal to
zero. The Dirichlet boundary conditions are written as follows :

C =





1 on (0, .2)× {0.} ∪ {0.} × (0, .2)
0 on (.8, 1.)× {1.} ∪ {1.} × (.8, .2)
1
2 on (.3, 1.)× {0.} ∪ {0.} × (.3, 1.)
1
2 on (0., 0.7)× {1.} ∪ {1.} × (0., 0.7)

Instead of a uniform rectangular mesh, we use 2 grids of triangular cells. The
first is made up of 34 triangular cells and the second of about 9500 triangular cells.
To test the robustness of our scheme, we set δ = 10−4. In this case, we expect to
see more severe numerical oscillations. We show in Figures 5 through 8 the results
obtained with the VFSYM scheme ([LP 05a]) and with the VFPMMD scheme. We
observe oscillations on the linear scheme for the coarse and the fine grids. They
disappear with the nonlinear scheme. On this problem, we only need 2 iterations in
the fixed point algorithm to obtain minimum and maximum principles. To achieve
convergence in the fixed point algorithm with the same criterion as in the previous
section, we need 20 iterations for the coarse grid and 34 iterations for the fine grid.
Note: if we take a uniform rectangular mesh, and δ = 10−3, no oscillations appear
with the VFSYM scheme.

SCAL
>−3.90E−01
< 1.42E+00

  0.0

 0.10

 0.20

 0.30

 0.40

 0.50

 0.60

 0.70

 0.80

 0.90

  1.0

SCAL
> 4.42E−02
< 9.54E−01

  0.0

 0.10

 0.20

 0.30

 0.40

 0.50

 0.60

 0.70

 0.80

 0.90

  1.0

Figure 5: Concentration with VFSYM and VFPMMD schemes: 34 cells (for VF-
SYM scheme: maximum value 1.42, minimum value −0.39, for VFPMMD scheme:
maximum value 0.954, minimum value 0.0442)
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SCAL
> 0.00E+00
< 1.00E+00

  0.0

 0.10

 0.20

 0.30

 0.40

 0.50

 0.60

 0.70

 0.80

 0.90

  1.0

SCAL
> 0.00E+00
< 1.00E+00

  0.0

 0.10

 0.20

 0.30

 0.40

 0.50

 0.60

 0.70

 0.80

 0.90

  1.0

Figure 6: VFSYM scheme : in yellow, position of negative values (on the left) and
values higher than 1 (on the right) ; 34 cells

SCAL
>−6.22E−03
< 1.01E+00

  0.0

 0.10

 0.20

 0.30

 0.40

 0.50

 0.60

 0.70

 0.80

 0.90

  1.0

SCAL
> 3.32E−03
< 9.97E−01

  0.0

 0.10

 0.20

 0.30

 0.40

 0.50

 0.60

 0.70

 0.80

 0.90

  1.0

Figure 7: Concentration with VFSYM and VFPMMD schemes: 9500 cells, (for
VFSYM scheme: maximum value 1.01, minimum value −6.22×10−3, for VFPMMD
scheme: maximum value 0.997, minimum value 3.32× 10−3)
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SCAL
> 0.00E+00
< 1.00E+00
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  1.0

SCAL
> 0.00E+00
< 1.00E+00

  0.0
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 0.60

 0.70

 0.80

 0.90

  1.0

Figure 8: VFSYM scheme : in yellow, position of negative values (on the left) and
values higher than 1 (on the right) ; 9500 cells

X

Y

PSfrag replacements

θ

Figure 9: Parallelogram-shaped domain Ω showing the distances X, Y and θ

3.3 Stationary solution on perturbed parallelograms

This test is described in [HER 08] and is based on an idea of I. Aavsatmark. The
domain Ω is parallelogram shaped. The parameters shown in figure 9 are X = 1,
Y = 1/30 and θ = 30 degrees. The medium is homogeneous and isotropic with

D = Id. The grid is made up of perturbed parallelogram meshes. The boundary
conditions and right hand side S satisfy :

{
S = 0 all cells except cell(6, 6) where

∫
cell(6,6) S(x)dx = 1

C = 0 on ∂Ω
(23)

For the VFPMMD scheme, we divide each quadrangular cell into two triangular cells.
We show in Figures 10 the results obtained with the VFSYM scheme and with the
VFPMMD scheme. With the first algorithm, we observe large oscillations. With the
second method, we check that the solution remains positive and has no local minima.
With the same criterion as in the previous section in the fixed point algorithm, the
positivity is obtained for 212 iterations and the convergence is achieved for 238
iterations.
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SCAL
>−7.21E−02
< 1.53E−01

−0.10

  0.0

 0.10

 0.20

 0.30

 0.40

SCAL
> 1.22E−09
< 3.99E−01

−0.10

  0.0

 0.10

 0.20

 0.30

 0.40

Figure 10: Concentration with VFSYM and VFPMMD schemes: perturbed paral-
lelograms

3.4 Anisotropy and wells

This example is test 9 described in [HER 08]. The domain Ω is a square unit
domain. The grid is a square uniform grid with 11 × 11 cells. The medium is

homogeneous and anisotropic with D = Rθ

(
1 0
0 10−3

)
Rθ
−1, Rθ is the rotation of

angle θ = 67.5 degrees. The source term S is equal to zero. The boundary conditions

are homogeneous Neumann conditions at the outer boundary : D~∇C · ~n = 0. The
pressure is fixed in two cells of the grid : C = 0 in cell (4,6) and C = 1 in cell (8,6).
For the VFPMMD scheme, we divide each quadrangular cell into two triangular
cells. We show in Figures 11 the results obtained with the VFSYM scheme and
with the VFPMMD scheme. With the first algorithm, we observe large oscillations.
With the second method, we check that the solution remains between 0 and 1. The
solution becomes inferior to 1 for 46 iterations and the positivity is obtained for
85 iterations. With the same criterion as in the previous section in the fixed point
algorithm, the convergence is achieved for 191 iterations.

4 Conclusion

We have shown the efficiency and the robustness of the new scheme for anisotropic
heterogeneous diffusion. Our scheme has the key property that we obtain a global
matrix which is a strictly diagonally dominant M-Matrix. However, this matrix
depends on the solution and so the scheme is nonlinear. The VFPMMD scheme
satisfies, simultaneously, minimum and maximum principles. We have shown that
the oscillations which can be present in non-monotone linear methods disappear
with our algorithm. We emphasize that this scheme is particularly interesting in the
case where the transport model is coupled with nonlinear chemical models. Indeed,
in this case, it is, of course, very important to calculate positive chemical element
concentrations.
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Figure 11: Concentration with VFSYM and VFPMMD schemes: anisotropy and
wells
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