Bridging the Hybrid High-Order and Hybridizable Discontinuous Galerkin Methods - Archive ouverte HAL
Article Dans Une Revue ESAIM: Mathematical Modelling and Numerical Analysis Année : 2016

Bridging the Hybrid High-Order and Hybridizable Discontinuous Galerkin Methods

Résumé

We build a bridge between the hybrid high-order (HHO) and the hybridizable discontinuous Galerkin (HDG) methods in the setting of a model diffusion problem. First, we briefly recall the construction of HHO methods and derive some new variants. Then, by casting the HHO method in mixed form, we identify the numerical flux so that the HHO method can be compared to HDG methods. In turn, the incorporation of the HHO method into the HDG framework brings up new, efficient choices of the local spaces and a new, delicate construction of the numerical flux ensuring optimal orders of convergence on meshes made of general shape-regular polyhedral elements. Numerical experiments comparing two of these methods are shown.
Fichier principal
Vignette du fichier
paper.pdf (373.84 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01115318 , version 1 (10-02-2015)
hal-01115318 , version 2 (04-07-2015)

Identifiants

Citer

Bernardo Cockburn, Daniele Di Pietro, Alexandre Ern. Bridging the Hybrid High-Order and Hybridizable Discontinuous Galerkin Methods. ESAIM: Mathematical Modelling and Numerical Analysis, 2016, Polyhedral discretization for PDE, 50 (3), pp.635-650. ⟨10.1051/m2an/2015051⟩. ⟨hal-01115318v2⟩
667 Consultations
1138 Téléchargements

Altmetric

Partager

More