Stability of finite difference schemes for hyperbolic initial boundary value problems: numerical boundary layers - Archive ouverte HAL
Article Dans Une Revue Numerical Mathematics: Theory, Methods and Applications Année : 2017

Stability of finite difference schemes for hyperbolic initial boundary value problems: numerical boundary layers

Résumé

In this article, we give a unified theory for constructing boundary layer expansions for discretized transport equations with homogeneous Dirichlet boundary conditions. We exhibit a natural assumption on the discretization under which the numerical solution can be written approximately as a two-scale boundary layer expansion. In particular, this expansion yields discrete semigroup estimates that are compatible with the continuous semigroup estimates in the limit where the space and time steps tend to zero. The novelty of our approach is to cover numerical schemes with arbitrarily many time levels, while semigroup estimates were restricted, up to now, to numerical schemes with two time levels only.
Fichier principal
Vignette du fichier
BC.pdf (479.72 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01114666 , version 1 (09-02-2015)
hal-01114666 , version 2 (16-06-2023)

Identifiants

Citer

Benjamin Boutin, Jean-François Coulombel. Stability of finite difference schemes for hyperbolic initial boundary value problems: numerical boundary layers. Numerical Mathematics: Theory, Methods and Applications, 2017, 10 (3), pp.489-519. ⟨10.4208/nmtma.2017.m1525⟩. ⟨hal-01114666v1⟩

Collections

FMPL
599 Consultations
411 Téléchargements

Altmetric

Partager

More