Online implementation of SVM based fault diagnosis strategy for PEMFC system - Archive ouverte HAL
Communication Dans Un Congrès Année : 2015

Online implementation of SVM based fault diagnosis strategy for PEMFC system

Résumé

This paper deals with the online diagnosis of Polymer Electrolyte Membrane Fuel Cell (PEMFC) systems. The pattern classification tool Support Vector Machine (SVM) is used to achieve fault detection and isolation (FDI). The algorithm is integrated into an embedded system of the type System in Package (SiP) and validated online in an experimental platform. Four concerned faults are diagnosed successfully online. Additionally, a procedure is proposed to improve the performance of robustness and raise the diagnosis accuracy.
Fichier principal
Vignette du fichier
FDFC_zli_09012015.pdf (1.33 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01113589 , version 1 (12-02-2020)

Identifiants

  • HAL Id : hal-01113589 , version 1

Citer

Zhongliang Li, Rachid Outbib, Stefan Giurgea, Daniel Hissel, Samir Jemei. Online implementation of SVM based fault diagnosis strategy for PEMFC system. the 6th International Conference on ”Fundamentals & Development of Fuel Cells” (FDFC), Feb 2015, Toulouse, France. ⟨hal-01113589⟩
96 Consultations
43 Téléchargements

Partager

More