Data-driven diagnosis of PEM fuel cell: A comparative study
Résumé
This paper is dedicated to data-driven diagnosis for Polymer Electrolyte Membrane Fuel Cell (PEMFC). More precisely, it deals with water related faults (flooding and membrane drying) by using pattern classification methodologies. Firstly, a method based on physical considerations is defined to label the training data. Secondly, a feature extraction procedure is carried out to pick up the significant features from vectors constructed by individual cell voltages. Finally, a classification is adopted in the feature space to realize the fault diagnosis. Various feature extraction and classification methodologies are employed on a 20-cell PEMFC stack. The performances of these methodologies are compared.
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...