On mean value results for the Riemann zeta-function in short intervals.
Résumé
We discuss the mean values of the Riemann zeta-function $\zeta(s)$, and analyze upper and lower bounds for
$$\int_T^{T+H} \vert\zeta(\frac{1}{2}+it)\vert^{2k}\,dt~~~~~~(k\in\mathbb{N}~{\rm fixed,}~1<\!\!< H \leq T).$$
In particular, the author's new upper bound for the above integral under the Riemann hypothesis is presented.
Domaines
Mathématiques [math]Origine | Accord explicite pour ce dépôt |
---|
Loading...