On mean value results for the Riemann zeta-function in short intervals. - Archive ouverte HAL
Article Dans Une Revue Hardy-Ramanujan Journal Année : 2009

On mean value results for the Riemann zeta-function in short intervals.

Résumé

We discuss the mean values of the Riemann zeta-function $\zeta(s)$, and analyze upper and lower bounds for $$\int_T^{T+H} \vert\zeta(\frac{1}{2}+it)\vert^{2k}\,dt~~~~~~(k\in\mathbb{N}~{\rm fixed,}~1<\!\!< H \leq T).$$ In particular, the author's new upper bound for the above integral under the Riemann hypothesis is presented.
Fichier principal
Vignette du fichier
32Article1.pdf (226.06 Ko) Télécharger le fichier
Origine Accord explicite pour ce dépôt
Loading...

Dates et versions

hal-01112342 , version 1 (02-02-2015)

Identifiants

Citer

Aleksandar Ivić. On mean value results for the Riemann zeta-function in short intervals.. Hardy-Ramanujan Journal, 2009, Volume 32 - 2009, pp.4-23. ⟨10.46298/hrj.2009.164⟩. ⟨hal-01112342⟩
494 Consultations
806 Téléchargements

Altmetric

Partager

More