Arithmetical investigations of particular Wynn power series - Archive ouverte HAL
Article Dans Une Revue Hardy-Ramanujan Journal Année : 2008

Arithmetical investigations of particular Wynn power series

Résumé

Using Borwein's simple analytic method for the irrationality of the $q$-logarithm at rational points, we prove a quite general result on arithmetic properties of certain series, where the entering parameters are algebraic numbers. More precisely, our main result says that $\sum_{k\ge1}\beta^k/(1-\alpha q^k)$ is not in $\mathbb{Q}(q)$, if $q$ is an algebraic integer with all its conjugates (if any) in the open unit disc, if $\alpha\in\mathbb{Q}(q)^\times\setminus\{q^{-1},q^{-2},\ldots\}$ satisfies a mild denominator condition (implying $|q|>1$), and if $\beta$ is a unit in $\mathbb{Q}(q)$ with $|\beta|\le1$ but no other conjugates in the open unit disc. Our applications concern meromorphic functions defined in $|z|<|u|^{a\ell}$ by power series $\sum_{n\ge1}z^n/(\prod_{0\le\lambda<\ell}R_{a(n+\lambda)+b})$, where $R_m:=gu^m+hv^m$ with non-zero $u,v,g,h$ satisfying $|u|>|v|, R_m\ne0$ for any $m\ge1$, and $a,b+1,\ell$ are positive rational integers. Clearly, the case where $R_m$ are the Fibonacci or Lucas numbers is of particular interest. It should be noted that power series of the above type were first studied by Wynn from the analytical point of view.
Fichier principal
Vignette du fichier
31Article2.pdf (325.12 Ko) Télécharger le fichier
Origine Accord explicite pour ce dépôt
Loading...

Dates et versions

hal-01112326 , version 1 (02-02-2015)

Identifiants

Citer

Peter Bundschuh. Arithmetical investigations of particular Wynn power series. Hardy-Ramanujan Journal, 2008, Volume 31 - 2008, pp.14-27. ⟨10.46298/hrj.2008.162⟩. ⟨hal-01112326⟩
97 Consultations
567 Téléchargements

Altmetric

Partager

More