Ideal solutions of the Tarry-Escott problem of degree eleven with applications to sums of thirteenth powers. - Archive ouverte HAL
Article Dans Une Revue Hardy-Ramanujan Journal Année : 2008

Ideal solutions of the Tarry-Escott problem of degree eleven with applications to sums of thirteenth powers.

Résumé

This paper is concerned with the system of simultaneous diophantine equations $\sum_{i=1}^6A_i^k=\sum_{i=1}^6B_i^k$ for $k=2, 4, 6, 8, 10.$ Till now only two numerical solutions of the system are known. This paper provides an infinite family of solutions. It is well-known that solutions of the above system lead to ideal solutions of the Tarry-Escott Problem of degree $11$, that is, of the system of simultaneous equations, $\sum_{i=1}^{12}a_i^k=\sum_{i=1}^{12}b_i^k$ for $k=1, 2, 3,\ldots,11.$ We use one of the ideal solutions to prove new results on sums of $13^{th}$ powers. In particular, we prove that every integer can be expressed as a sum or difference of at most $27$ thirteenth powers of positive integers.
Fichier principal
Vignette du fichier
31Article1.pdf (4.64 Mo) Télécharger le fichier
Origine Accord explicite pour ce dépôt

Dates et versions

hal-01112313 , version 1 (02-02-2015)

Identifiants

Citer

Ajai Choudhry, Jaroslaw Wroblewski. Ideal solutions of the Tarry-Escott problem of degree eleven with applications to sums of thirteenth powers.. Hardy-Ramanujan Journal, 2008, Volume 31 - 2008, pp.1-13. ⟨10.46298/hrj.2008.161⟩. ⟨hal-01112313⟩
219 Consultations
1232 Téléchargements

Altmetric

Partager

More