A lower bound concerning subset sums which do not cover all the residues modulo $p$. - Archive ouverte HAL
Article Dans Une Revue Hardy-Ramanujan Journal Année : 2005

A lower bound concerning subset sums which do not cover all the residues modulo $p$.

Résumé

Let $c>\sqrt{2}$ and let $p$ be a prime number. J-M. Deshouillers and G. A. Freiman proved that a subset $\mathcal A$ of $\mathbb{Z}/p\mathbb{Z}$, with cardinality larger than $c\sqrt{p}$ and such that its subset sums do not cover $\mathbb{Z}/p\mathbb{Z}$ has an isomorphic image which is rather concentrated; more precisely, there exists $s$ prime to $p$ such that $$\sum_{a\in\mathcal A}\Vert\frac{as}{p}\Vert < 1+O(p^{-1/4}\ln p),$$ where the constant implied in the ``O'' symbol depends on $c$ at most. We show here that there exist a $K$ depending on $c$ at most, and such sets $\mathcal A$, such that for all $s$ prime to $p$ one has $$ \sum_{a\in\mathcal A}\Vert\frac{as}{p}\Vert>1+Kp^{-1/2}.$$
Fichier principal
Vignette du fichier
28Article3.pdf (121.29 Ko) Télécharger le fichier
Origine Accord explicite pour ce dépôt

Dates et versions

hal-01110947 , version 1 (29-01-2015)

Identifiants

Citer

Jean-Marc Deshouillers. A lower bound concerning subset sums which do not cover all the residues modulo $p$.. Hardy-Ramanujan Journal, 2005, Volume 28 - 2005, pp.30-34. ⟨10.46298/hrj.2005.85⟩. ⟨hal-01110947⟩

Collections

CNRS IMB
152 Consultations
888 Téléchargements

Altmetric

Partager

More