A Collaborative Document Ranking Model for a Multi-faceted Search - Archive ouverte HAL
Communication Dans Un Congrès Année : 2013

A Collaborative Document Ranking Model for a Multi-faceted Search

Résumé

This paper presents a novel collaborative document ranking model which aims at solving a complex information retrieval task in-volving a multi-faceted information need. For this purpose, we consider a group of users, viewed as experts, who collaborate by addressing the different query facets. We propose a two-step algorithm based on a rele-vance feedback process which first performs a document scoring towards each expert and then allocates documents to the most suitable experts using the Expectation-Maximisation learning-method. The performance improvement is demonstrated through experiments using TREC inter-active benchmark.
Fichier principal
Vignette du fichier
submission.pdf (227.87 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01110710 , version 1 (28-01-2015)

Licence

Copyright (Tous droits réservés)

Identifiants

Citer

Laure Soulier, Lynda Tamine, Wahiba Bahsoun. A Collaborative Document Ranking Model for a Multi-faceted Search. 9th Asia Information Retrieval Societies Conference, AIRS 2013, Dec 2013, Singapour, Singapore. pp.109 - 120, ⟨10.1007/978-3-642-45068-6_10⟩. ⟨hal-01110710⟩
145 Consultations
257 Téléchargements

Altmetric

Partager

More