Solving Large MultiZenoTravel Benchmarks with Divide-and-Evolve - Archive ouverte HAL
Communication Dans Un Congrès Année : 2015

Solving Large MultiZenoTravel Benchmarks with Divide-and-Evolve

Résumé

A method to generate various size tunable benchmarks for multi-objective AI planning with a known Pareto Front has been recently proposed in order to provide a wide range of Pareto Front shapes and different magnitudes of difficulty. The performance of the Pareto-based multi-objective evolutionary planner DaEYAHSP are evaluated on some large instances with singular Pareto Front shapes, and compared to those of the single-objective aggregation-based approach.
Fichier principal
Vignette du fichier
short-paper.pdf (327.2 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01109776 , version 1 (27-01-2015)

Identifiants

  • HAL Id : hal-01109776 , version 1

Citer

Alexandre Quemy, Marc Schoenauer, Vincent Vidal, Johann Dréo, Pierre Savéant. Solving Large MultiZenoTravel Benchmarks with Divide-and-Evolve. Learning and Intelligent OptimizatioN - LION 9, Jan 2015, Lille, France. pp.262-267. ⟨hal-01109776⟩
343 Consultations
222 Téléchargements

Partager

More