Hybrid Simplification using Deep Semantics and Machine Translation - Archive ouverte HAL
Communication Dans Un Congrès Année : 2014

Hybrid Simplification using Deep Semantics and Machine Translation

Résumé

We present a hybrid approach to sentence simplification which combines deep semantics and monolingual machine translation to derive simple sentences from complex ones. The approach differs from previous work in two main ways. First, it is semantic based in that it takes as input a deep semantic representation rather than e.g., a sentence or a parse tree. Second, it combines a simplification model for splitting and deletion with a monolingual translation model for phrase substitution and reordering. When compared against current state of the art methods, our model yields significantly simpler output that is both grammatical and meaning preserving.
Fichier principal
Vignette du fichier
acl14-narayan.pdf (192.95 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-01109581 , version 1 (29-01-2015)

Identifiants

  • HAL Id : hal-01109581 , version 1

Citer

Shashi Narayan, Claire Gardent. Hybrid Simplification using Deep Semantics and Machine Translation. the 52nd Annual Meeting of the Association for Computational Linguistics, ACL, Jun 2014, Baltimore, United States. pp.435 - 445. ⟨hal-01109581⟩
690 Consultations
391 Téléchargements

Partager

More