Ramanujan's lattice point problem, prime number theory and other remarks. - Archive ouverte HAL
Article Dans Une Revue Hardy-Ramanujan Journal Année : 1996

Ramanujan's lattice point problem, prime number theory and other remarks.

Résumé

This paper gives results on four diverse topics. The first result is that the error term for the number of integers $2^u3^v \le n$ is $O((\log n)^{1-\delta})$ with $\delta=(2^{40}(\log3))^{-1}$, using a theorem of A. Baker and G. W\"ustholz. The second result is an averaged explicit formula \[ \psi(x) = x-\frac{1}{T} \int_{T}^{2T} \left( \sum \limits_{|\gamma| \le \tau} \frac{x^{\rho}}{\rho} \right) \ d\tau + O \left( \frac{\log x}{\log \frac{x}{T}}\cdot \frac{x}{T} \right) \] for $x \gg T \gg 1$. It then follows, by the Riemann hypothesis, that $\psi (x+h)-\psi (x)= h+ O \left ( h \lambda^{1/2} \right )$ if $h=\lambda x^{1/2} \log x$. The third theme tightens the $\log$ powers in the zero density bounds of Ingham and Huxley, and gives corollaries for the mean-value of $\psi (x+h)-\psi (x)-h$. The fourth remark concerns a hypothetical improvement in the constant 2 in the Brun-Titchmarsh theorem, averaged over congruence classes, and its consequence for $L \left ( 1,\chi \right )$.
Fichier principal
Vignette du fichier
19Article1.pdf (10.7 Mo) Télécharger le fichier
Origine Accord explicite pour ce dépôt
Loading...

Dates et versions

hal-01109304 , version 1 (26-01-2015)

Identifiants

Citer

K Ramachandra, A Sankaranarayanan, K Srinivas. Ramanujan's lattice point problem, prime number theory and other remarks.. Hardy-Ramanujan Journal, 1996, Volume 19 - 1996, pp.2 - 56. ⟨10.46298/hrj.1996.133⟩. ⟨hal-01109304⟩
123 Consultations
619 Téléchargements

Altmetric

Partager

More