On some over primes
Résumé
It will be shown that, for any $\delta > 0$,
\[
{\sum_{p\leq n}}^* \; \frac{\log p}{p} = \frac{1}{2} \log n + O\Big((\log n)^{\frac{5}{6}+\delta}\Big),
\]
where (*) restricts the summation to those primes $p$, which satisfy $n = kp+r$ for some integers $k$ and $r$, $p/2 < r < p$. This result is connected with questions
concerning prime divisors of binomial coefficients.
Domaines
Mathématiques [math]Origine | Accord explicite pour ce dépôt |
---|
Loading...