Generalizations of bounds on the index of convergence to weighted digraphs - Archive ouverte HAL
Communication Dans Un Congrès Année : 2014

Generalizations of bounds on the index of convergence to weighted digraphs

Résumé

Sequences of maximum-weight walks of a growing length in weighted digraphs have many applications in manu-facturing and transportation systems, as they encode important performance parameters. It is well-known that they eventually enter a periodic regime if the digraph is strongly connected. The length of their transient phase depends, in general, both on the size of digraph and on the magnitude of the weights. In this paper, we show that certain bounds on the transients of unweighted digraphs, such as the bounds of Wielandt, Dulmage-Mendelsohn, Schwarz, Kim and Gregory-Kirkland-Pullman, remain true for critical nodes in weighted digraphs.
Fichier principal
Vignette du fichier
paper.pdf (146 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01107293 , version 1 (20-01-2015)

Identifiants

Citer

Glenn Merlet, Thomas Nowak, Hans Schneider, Sergei Sergeev. Generalizations of bounds on the index of convergence to weighted digraphs. IEEE Conference on Decision and Control, Dec 2014, Los Angeles, United States. ⟨10.1109/CDC.2014.7039627⟩. ⟨hal-01107293⟩
390 Consultations
17116 Téléchargements

Altmetric

Partager

More