Exact Exponential Algorithms to Find a Tropical Connected Set of Minimum Size - Archive ouverte HAL Access content directly
Conference Papers Year : 2014

Exact Exponential Algorithms to Find a Tropical Connected Set of Minimum Size

Abstract

The input of the Tropical Connected Set problem is a vertex-colored graph G=(V,E) and the task is to find a connected subset $S\subseteq V$ of minimum size such that each color of G appears in S . This problem is known to be NP-complete, even when restricted to trees of height at most three. We show that Tropical Connected Set on trees has no subexponential-time algorithm unless the Exponential Time Hypothesis fails. This motivates the study of exact exponential algorithms to solve Tropical Connected Set. We present an O^∗(1.5359n) time algorithm for general graphs and an O^∗(1.2721n) time algorithm for trees.
No file

Dates and versions

hal-01105083 , version 1 (19-01-2015)

Identifiers

Cite

Mathieu Chapelle, Manfred Cochefert, Dieter Kratsch, Romain Letourneur, Mathieu Liedloff. Exact Exponential Algorithms to Find a Tropical Connected Set of Minimum Size. Parameterized and Exact Computation - 9th International Symposium, Sep 2014, Wroclaw, Poland. pp.147-158, ⟨10.1007/978-3-319-13524-3_13⟩. ⟨hal-01105083⟩
92 View
0 Download

Altmetric

Share

Gmail Mastodon Facebook X LinkedIn More