A Lemma in complex function theory I - Archive ouverte HAL Access content directly
Journal Articles Hardy-Ramanujan Journal Year : 1989

A Lemma in complex function theory I

Abstract

Continuing our earlier work on the same topic published in the same journal last year we prove the following result in this paper: If $f(z)$ is analytic in the closed disc $\vert z\vert\leq r$ where $\vert f(z)\vert\leq M$ holds, and $A\geq1$, then $\vert f(0)\vert\leq(24A\log M) (\frac{1}{2r}\int_{-r}^r \vert f(iy)\vert\,dy)+M^{-A}.$ Proof uses an averaging technique involving the use of the exponential function and has many applications to Dirichlet series and the Riemann zeta function.
Fichier principal
Vignette du fichier
12Article1.pdf (1.52 Mo) Télécharger le fichier
Origin : Explicit agreement for this submission
Loading...

Dates and versions

hal-01104337 , version 1 (16-01-2015)

Identifiers

Cite

R Balasubramanian, K Ramachandra. A Lemma in complex function theory I. Hardy-Ramanujan Journal, 1989, Volume 12 - 1989, pp.1 - 5. ⟨10.46298/hrj.1989.108⟩. ⟨hal-01104337⟩

Collections

INSMI
117 View
366 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More