High-definition three-dimensional television disparity map computation
Résumé
By reconsidering some two-dimensional video inherited approaches and by adapting them to the stereoscopic video content and to the human visual system peculiarities, a new disparity map is designed. First, the inner relation between the left and the right views is modeled by some weights discriminating between the horizon- tal and vertical disparities. Second, the block matching operation is achieved by considering a visual related measure (normalized cross correlation) instead of the traditional pixel differences (mean squared error or sum of absolute differences). The advanced three-dimensional (3-D) video-new three step search (3DV-NTSS) disparity map (3-D Video-New Three Step Search) is benchmarked against two state- of-the-art algorithms, namely NTSS and full-search MPEG (FS- MPEG), by successively considering two corpora. The first corpus was organized during the 3DLive French national project and regroups 20 min of stereoscopic video sequences. The second one, with similar size, is provided by the MPEG community. The experimental results demonstrate the effectiveness of 3DV-NTSS in both reconstructed image quality (average gains between 3% and 7% in both PSNR and structural similarity, with a singular exception) and computational cost (search operation number reduced by average factors between 1.3 and 13). The 3DV-NTSS was finally validated by designing a water- marking method for high definition 3-D TV content protection.