Mean-value of the Riemann zeta-function and other remarks III - Archive ouverte HAL
Article Dans Une Revue Hardy-Ramanujan Journal Année : 1983

Mean-value of the Riemann zeta-function and other remarks III

Résumé

The results given in these papers continue the theme developed in part I of this series. In Part III we prove $M(\frac{1}{2})>\!\!\!>_k (\log H_0/q_n)^{k^2}$, where $p_m/q_m$ is the $m$th convergent of the continued fraction expansion of $k$, and $n$ is the unique integer such that $q_nq_{n+1}\geq \log\log H_0 > q_nq_{n-1}$. Section 4 of part III discusses lower bounds of mean values of Titchmarsh series.
Fichier principal
Vignette du fichier
6Article1.pdf (4.25 Mo) Télécharger le fichier
Origine Accord explicite pour ce dépôt
Loading...

Dates et versions

hal-01104234 , version 1 (16-01-2015)

Identifiants

Citer

K Ramachandra. Mean-value of the Riemann zeta-function and other remarks III. Hardy-Ramanujan Journal, 1983, Volume 6 - 1983, pp.1-21. ⟨10.46298/hrj.1983.96⟩. ⟨hal-01104234⟩
65 Consultations
623 Téléchargements

Altmetric

Partager

More