Some remarks on the mean value of the riemann zeta-function and other Dirichlet series-II - Archive ouverte HAL
Article Dans Une Revue Hardy-Ramanujan Journal Année : 1980

Some remarks on the mean value of the riemann zeta-function and other Dirichlet series-II

Résumé

This is a sequel (Part II) to an earlier article with the same title. There are reasons to expect that the estimates proved in Part I without the factor $(\log\log H)^{-C}$ represent the real truth, and this is indeed proved in part II on the assumption that in the first estimate $2k$ is an integer. %This is of great interest, for little has been known on the mean value of $\vert\zeta(\frac{1}{2}+it)\vert^k$ for odd $k$, say $k=1$; for even $k$, see the book by E. C. Titchmarsh [The theory of the Riemann zeta function, Clarendon Press, Oxford, 1951, Theorem 7.19]. The proofs are based on applications of classical function-theoretic theorems, together with mean value theorems for Dirichlet polynomials or series. %In the case of the zeta function, the principle is to write $\vert\zeta(s)\vert^k=\vert\zeta(s)^{k/2}\vert^2$, where $\zeta(s)^{k/2}$ is related to a rapidly convergent series which is essentially a partial sum of the Dirichlet series of $\zeta(s)^{k/2}$, convergent in the half-plane $\sigma>1$.
Fichier principal
Vignette du fichier
3Article1.pdf (4.59 Mo) Télécharger le fichier
Origine Accord explicite pour ce dépôt
Loading...

Dates et versions

hal-01103855 , version 1 (15-01-2015)

Identifiants

Citer

K Ramachandra. Some remarks on the mean value of the riemann zeta-function and other Dirichlet series-II. Hardy-Ramanujan Journal, 1980, Volume 3 - 1980, pp.1 - 24. ⟨10.46298/hrj.1980.88⟩. ⟨hal-01103855⟩
190 Consultations
865 Téléchargements

Altmetric

Partager

More