Optimal transport with Laplacian regularization - Archive ouverte HAL
Communication Dans Un Congrès Année : 2014

Optimal transport with Laplacian regularization

Résumé

We propose a method based on optimal transport for empirical distributions with Laplacian regularization (LOT). Laplacian regularization is a graph-based regu-larization that can encode neighborhood similarity between samples either on the final position of the transported samples or on their displacement. In both cases, LOT is expressed as a quadratic programming problem and can be solved with a Frank-Wolfe algorithm with optimal step size. Result on domain adaptation and a shape matching problems show the interest of using this regularization in optimal transport.
Fichier principal
Vignette du fichier
main.pdf (3.4 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01103076 , version 1 (14-01-2015)

Identifiants

  • HAL Id : hal-01103076 , version 1

Citer

Rémi Flamary, Nicolas Courty, Alain Rakotomamonjy, Devis Tuia. Optimal transport with Laplacian regularization. NIPS 2014, Workshop on Optimal Transport and Machine Learning, Dec 2014, Montréal, Canada. ⟨hal-01103076⟩
1117 Consultations
464 Téléchargements

Partager

More