Optimal configuration for identification of parameters for chloride ingress models using Bayesian networks - Archive ouverte HAL
Communication Dans Un Congrès Année : 2014

Optimal configuration for identification of parameters for chloride ingress models using Bayesian networks

Résumé

Chloride ingress into concrete is one of the major causes leading to the degradation of reinforced concrete structures. Its modelling is an important task to plan and quantify maintenance operations of structures. Relevant material and environmental parameters for modelling could be determined from inspection data that is very limited due to time-consuming and expensive tests. The main objective of this paper is to develop a method based on Bayesian updating for selecting appropriate inspection configuration that can provide an optimal balance between accuracy and cost. The results indicate that Bayesian approach could be a useful tool to identify model parameters even from insufficient inspection data.
Fichier principal
Vignette du fichier
13_77_tran_final.pdf (461.32 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-01100756 , version 1 (09-01-2015)

Identifiants

Citer

Thanh Binh Tran, Emilio Bastidas-Arteaga, Franck Schoefs, Stéphanie Bonnet. Optimal configuration for identification of parameters for chloride ingress models using Bayesian networks. XIIIèmes Journées Nationales Génie Côtier – Génie Civil, Jul 2014, Dunkerque, France. ⟨10.5150/jngcgc.2014.077⟩. ⟨hal-01100756⟩
325 Consultations
114 Téléchargements

Altmetric

Partager

More