ADAPTIVE ESTIMATION IN THE FUNCTIONAL NONPARAMETRIC REGRESSION MODEL - Archive ouverte HAL
Article Dans Une Revue Journal of Multivariate Analysis Année : 2016

ADAPTIVE ESTIMATION IN THE FUNCTIONAL NONPARAMETRIC REGRESSION MODEL

Gaëlle Chagny
Angelina Roche

Résumé

In this paper, we consider nonparametric regression estimation when the predictor is a functional random variable (typically a curve) and the response is scalar. Starting from a classical collection of kernel estimates, the bias-variance decomposition of a pointwise risk is investigated to understand what can be expected at best from adaptive estimation. We propose a fully data-driven local bandwidth selection rule in the spirit of the Goldenshluger and Lepski method. The main result is a nonasymptotic risk bound which shows the optimality of our tuned estimator from the oracle point of view. Convergence rates are also derived for regression functions belonging to Hölder spaces and under various assumptions on the rate of decay of the small ball probability of the explanatory variable. A simulation study also illustrates the good practical performances of our estimator.
Fichier principal
Vignette du fichier
regression2.pdf (428.21 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01099520 , version 1 (04-01-2015)

Identifiants

Citer

Gaëlle Chagny, Angelina Roche. ADAPTIVE ESTIMATION IN THE FUNCTIONAL NONPARAMETRIC REGRESSION MODEL. Journal of Multivariate Analysis, 2016, 146, pp.105--118. ⟨10.1016/j.jmva.2015.07.001⟩. ⟨hal-01099520⟩
574 Consultations
780 Téléchargements

Altmetric

Partager

More