KANTOROVICH DUALITY FOR GENERAL TRANSPORT COSTS AND APPLICATIONS - Archive ouverte HAL
Article Dans Une Revue Journal of Functional Analysis Année : 2018

KANTOROVICH DUALITY FOR GENERAL TRANSPORT COSTS AND APPLICATIONS

Résumé

We introduce a general notion of transport cost that encompasses many costs used in the literature (including the classical one and weak transport costs introduced by Talagrand and Marton in the 90's), and prove a Kantorovich type duality theorem. As a by-product we obtain various applications in different directions: we give a short proof of a result by Strassen on the existence of a martingale with given marginals, we characterize the associated transport-entropy inequalities together with the log-Sobolev inequality restricted to convex/concave functions. Some explicit examples of discrete measures satisfying weak transport-entropy inequalities are also given.
Fichier principal
Vignette du fichier
GRST-Duality-cut version.pdf (644.49 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01098114 , version 1 (22-12-2014)
hal-01098114 , version 2 (02-08-2015)
hal-01098114 , version 3 (18-12-2015)
hal-01098114 , version 4 (24-12-2015)

Identifiants

Citer

Nathael Gozlan, Cyril Roberto, Paul-Marie Samson, Prasad Tetali. KANTOROVICH DUALITY FOR GENERAL TRANSPORT COSTS AND APPLICATIONS. Journal of Functional Analysis, 2018, 273 (no 11), pp.3327-3405. ⟨hal-01098114v4⟩
378 Consultations
935 Téléchargements

Altmetric

Partager

More