Low-order reconstruction operators on polyhedral meshes: application to compatible discrete operator schemes - Archive ouverte HAL
Article Dans Une Revue Computer Aided Geometric Design Année : 2015

Low-order reconstruction operators on polyhedral meshes: application to compatible discrete operator schemes

Jerome Bonelle
EDF

Résumé

We study low-order reconstruction operators on polyhedral meshes, providing a unified framework for degrees of freedom attached to vertices, edges, faces, and cells. We present two equivalent sets of design properties and draw links with the literature. In particular, the two-level construction based on a P0-consistent and a stabilization part provides a systematic way of designing these operators. We present a simple example of piecewise constant reconstruction in each mesh cell, relying on geometric identities to fulfill the design properties on polyhedral meshes. Finally, we use these reconstruction operators to define a Hodge inner product and build Compatible Discrete Operator schemes, and we test the influence of the reconstruction operators in terms of accuracy and computational efficiency on an anisotropic diffusion problem.
Fichier principal
Vignette du fichier
BoPiE14.pdf (1.37 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01097311 , version 1 (06-01-2015)

Identifiants

Citer

Jerome Bonelle, Daniele Di Pietro, Alexandre Ern. Low-order reconstruction operators on polyhedral meshes: application to compatible discrete operator schemes. Computer Aided Geometric Design, 2015, 35-36, pp.27-41. ⟨10.1016/j.cagd.2015.03.015⟩. ⟨hal-01097311⟩
468 Consultations
314 Téléchargements

Altmetric

Partager

More