Two-level algebraic domain decomposition preconditioners using Jacobi-Schwarz smoother and adaptive coarse grid corrections - Archive ouverte HAL
Article Dans Une Revue Journal of Computational and Applied Mathematics Année : 2014

Two-level algebraic domain decomposition preconditioners using Jacobi-Schwarz smoother and adaptive coarse grid corrections

Résumé

We investigate two-level preconditioners on the extended linear system arising from the domain decomposition method. The additive Schwarz method is used as a smoother, and the coarse grid space is constructed by using the Ritz vectors obtained in the Arnoldi process. The coarse grid space can be improved adaptively as the Ritz vectors become a better approximation of the eigenvectors. Numerical tests on the model problem demonstrate the efficiency.

Dates et versions

hal-01094008 , version 1 (11-12-2014)

Identifiants

Citer

Hua Xiang, Frédéric Nataf. Two-level algebraic domain decomposition preconditioners using Jacobi-Schwarz smoother and adaptive coarse grid corrections. Journal of Computational and Applied Mathematics, 2014, 261, pp.1-13. ⟨10.1016/j.cam.2013.10.027⟩. ⟨hal-01094008⟩
174 Consultations
0 Téléchargements

Altmetric

Partager

More