ESTIMATES FOR SOLUTIONS OF A LOW-VISCOSITY KICK-FORCED GENERALISED BURGERS EQUATION - Archive ouverte HAL
Article Dans Une Revue Proceedings of the Royal Society of Edinburgh: Section A, Mathematics Année : 2013

ESTIMATES FOR SOLUTIONS OF A LOW-VISCOSITY KICK-FORCED GENERALISED BURGERS EQUATION

Résumé

We consider a non-homogeneous generalised Burgers equation:$$∂u/∂t + f (u) ∂u/∂x − \nu ∂^2u/∂x^2 = η^ω , t ∈ R, x ∈ S^1 .$$Here, $\nu$ is small and positive, $f$ is strongly convex and satisfies a growth assumption, while $η^ω$ is a space-smooth random "kicked" forcing term. For any solution $u$ of this equation, we consider the quasi-stationary regime, corresponding to $t ≥ 2$. After taking the ensemble average, we obtain upper estimates as well as time-averaged lower estimates for a class of Sobolev norms of $u$. These estimates are of the form $C \nu^{−β}$ with the same values of $β$ for bounds from above and from below. They depend on $η$ and $f$ , but do not depend on the time $t$ or the initial condition.
Fichier principal
Vignette du fichier
KickedBurgers.pdf (316.84 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01092646 , version 1 (09-12-2014)

Identifiants

  • HAL Id : hal-01092646 , version 1

Citer

Alexandre Boritchev. ESTIMATES FOR SOLUTIONS OF A LOW-VISCOSITY KICK-FORCED GENERALISED BURGERS EQUATION. Proceedings of the Royal Society of Edinburgh: Section A, Mathematics, 2013, pp.143(2), 253-268. ⟨hal-01092646⟩
123 Consultations
48 Téléchargements

Partager

More