Korn-Poincaré inequalities for functions with a small jump set - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2014

Korn-Poincaré inequalities for functions with a small jump set

Inégalités de Korn-Poincaré pour des fonctions avec un petit ensemble de discontinuité

Résumé

"Special functions with bounded deformation" and p-integrable strain arise naturally in the study of geometrically linear fracture models. They have a jump set of finite (n − 1)-dimensional measure and, away from the jump set, a symmetrized gradient e(u) in Lp , p ≥ 1. We show that if the measure of the jump set is sufficiently small with respect to the size of the domain, then the function u can be approximated by an affine function away from a small exceptional set, with an error which depends solely on e(u). We also derive a corresponding trace statement.
Fichier principal
Vignette du fichier
bd10-refs.pdf (238.03 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01091710 , version 1 (07-12-2014)

Identifiants

  • HAL Id : hal-01091710 , version 1

Citer

Antonin Chambolle, Sergio Conti, Gilles Francfort. Korn-Poincaré inequalities for functions with a small jump set. 2014. ⟨hal-01091710⟩

Relations

336 Consultations
672 Téléchargements

Partager

More