Semantically Secure Lattice Codes for the Gaussian Wiretap Channel - Archive ouverte HAL
Article Dans Une Revue IEEE Transactions on Information Theory Année : 2014

Semantically Secure Lattice Codes for the Gaussian Wiretap Channel

Résumé

We propose a new scheme of wiretap lattice coding that achieves semantic security and strong secrecy over the Gaussian wiretap channel. The key tool in our security proof is the flatness factor, which characterizes the convergence of the conditional output distributions corresponding to different messages and leads to an upper bound on the information leakage. We not only introduce the notion of secrecy-good lattices, but also propose the flatness factor as a design criterion of such lattices. Both the modulo-lattice Gaussian channel and genuine Gaussian channel are considered. In the latter case, we propose a novel secrecy coding scheme based on the discrete Gaussian distribution over a lattice, which achieves the secrecy capacity to within a half nat under mild conditions. No a priori distribution of the message is assumed, and no dither is used in our proposed schemes.

Dates et versions

hal-01091295 , version 1 (05-12-2014)

Identifiants

Citer

Cong Ling, Laura Luzzi, Jean-Claude Belfiore, Damien Stehlé. Semantically Secure Lattice Codes for the Gaussian Wiretap Channel. IEEE Transactions on Information Theory, 2014, 60 (10), pp.6399-6416. ⟨10.1109/TIT.2014.2343226⟩. ⟨hal-01091295⟩
163 Consultations
0 Téléchargements

Altmetric

Partager

More