Interpolation by polynomial functions of distributive lattices : a generalization of a theorem of R. L. Goodstein
Résumé
We consider the problem of interpolating functions partially defined over a distributive lattice by means of lattice polynomial functions. Goodstein's theorem solves a particular instance of this interpolation problem on a distributive lattice L with least and greatest elements 0 and 1, respectively: given a function f : {0, 1} n → L , there exists a lattice polynomial function p:Ln→L such that p| {0,1} n = f if and only if f is monotone; in this case, the interpolating polynomial p is unique. We extend Goodstein’s theorem to a wider class of partial functions f:D→L over a distributive lattice L, not necessarily bounded, and where D⊆Ln is allowed to range over n-dimensional rectangular boxes D={a1,b1}×...×{an,bn} with ai,bi∈L and ai
Domaines
Mathématiques [math]Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...
Miguel Couceiro : Connectez-vous pour contacter le contributeur
https://hal.science/hal-01090572
Soumis le : samedi 18 février 2017-15:09:02
Dernière modification le : mercredi 20 novembre 2024-15:36:02
Archivage à long terme le : vendredi 19 mai 2017-14:51:14
Citer
Miguel Couceiro, Tamas Waldhauser. Interpolation by polynomial functions of distributive lattices : a generalization of a theorem of R. L. Goodstein. Algebra Universalis, 2013, 69 (3), pp.13. ⟨10.1007/s00012-013-0231-6⟩. ⟨hal-01090572⟩
Collections
329
Consultations
121
Téléchargements