Interpolation by polynomial functions of distributive lattices : a generalization of a theorem of R. L. Goodstein - Archive ouverte HAL
Article Dans Une Revue Algebra Universalis Année : 2013

Interpolation by polynomial functions of distributive lattices : a generalization of a theorem of R. L. Goodstein

Résumé

We consider the problem of interpolating functions partially defined over a distributive lattice by means of lattice polynomial functions. Goodstein's theorem solves a particular instance of this interpolation problem on a distributive lattice L with least and greatest elements 0 and 1, respectively: given a function f : {0, 1} n → L , there exists a lattice polynomial function p:Ln→L such that p| {0,1} n = f if and only if f is monotone; in this case, the interpolating polynomial p is unique. We extend Goodstein’s theorem to a wider class of partial functions f:D→L over a distributive lattice L, not necessarily bounded, and where D⊆Ln is allowed to range over n-dimensional rectangular boxes D={a1,b1}×...×{an,bn} with ai,bi∈L and ai
Fichier principal
Vignette du fichier
Interpolation-Goodstein.pdf (309.52 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01090572 , version 1 (18-02-2017)

Identifiants

Citer

Miguel Couceiro, Tamas Waldhauser. Interpolation by polynomial functions of distributive lattices : a generalization of a theorem of R. L. Goodstein. Algebra Universalis, 2013, 69 (3), pp.13. ⟨10.1007/s00012-013-0231-6⟩. ⟨hal-01090572⟩
329 Consultations
121 Téléchargements

Altmetric

Partager

More