Data comparison using Gaussian Graphical Models - Archive ouverte HAL
Communication Dans Un Congrès Année : 2014

Data comparison using Gaussian Graphical Models

Résumé

This paper focuses on estimated Gaussian Graphical Models (GGM) from sets of experimental data. Some extension of known Bayesian methods are proposed, allowing to introduce score functions to measure the relevance of the obtained GGM structure to describe the data. These score functions form the basic measurement to derive a new dissimilarity matrix based on the GGM structure. This latter is then exploited for classification purpose. Examples are provided using both simulated and real experimental fMRI data.
Fichier non déposé

Dates et versions

hal-01090202 , version 1 (03-12-2014)

Identifiants

  • HAL Id : hal-01090202 , version 1

Citer

Aude Costard, Sophie Achard, Olivier J.J. Michel, Pierre Borgnat, Patrice Abry. Data comparison using Gaussian Graphical Models. ICSP 2014 - 12th IEEE International Conference on Signal Processing, Oct 2014, Hangzhou, China. ⟨hal-01090202⟩
122 Consultations
0 Téléchargements

Partager

More