A cooperative mechanism of clotrimazoles in P450 revealed by the dissociation picture of clotrimazole from P450.
Résumé
The dissociation processes of clotrimazole (CLT) in several models are comparatively investigated by molecular dynamics simulations to explore the cooperative mechanism of clotrimazoles in P450. Our results suggest that when P450 only accommodates the active CLT (CLT1), CLT1 continually diffuses away from heme, and the partial BC loop (residues 73-88) and the extended FG loop (residues 173-186) first close and then open. When the enzyme binds to two CLT molecules, CLT1 basically keeps close to heme, and the partial BC loop and the extended FG loop move close to each other. Clearly, the effector CLT (CLT2) plays a cooperative role in the inhibition of CLT1 on P450. CLT2 restrains the dissociation of CLT1 first through direct π-π stacking interactions and then through the rearranged binding site induced by CLT2. The presence of CLT1 can help to stabilize the protein structure around CLT2 by interacting with M86, Q173, and M174.