Q-intersection Algorithms for Constraint-Based Robust Parameter Estimation - Archive ouverte HAL
Communication Dans Un Congrès Année : 2014

Q-intersection Algorithms for Constraint-Based Robust Parameter Estimation

Résumé

Given a set of axis-parallel n-dimensional boxes, the q-intersection is defined as the smallest box encompassing all the points that belong to at least q boxes. Computing the q-intersection is a combinatorial problem that allows us to han-dle robust parameter estimation with a numerical constraint programming approach. The q-intersection can be viewed as a filtering operator for soft constraints that model measure-ments subject to outliers. This paper highlights the equiva-lence of this operator with the search of q-cliques in a graph whose boxicity is bounded by the number of variables in the constraint network. We present a computational study of the q-intersection. We also propose a fast heuristic and a sophisti-cated exact q-intersection algorithm. First experiments show that our exact algorithm outperforms the existing one while our heuristic performs an efficient filtering on hard problems.
Fichier principal
Vignette du fichier
carbonnel_et_al_aaai14.pdf (580.67 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-01084606 , version 1 (21-11-2014)

Identifiants

Citer

Clément Carbonnel, Gilles Trombettoni, Philippe Vismara, Gilles Chabert. Q-intersection Algorithms for Constraint-Based Robust Parameter Estimation. 28th AAAI Conference on Artificial Intelligence, Jul 2014, Québec City, Canada. pp.2630-2636, ⟨10.1609/aaai.v28i1.9117⟩. ⟨hal-01084606⟩
835 Consultations
127 Téléchargements

Altmetric

Partager

More