Pulsed magnetohydrodynamic blood flow in a rigid vessel under physiological pressure gradient
Résumé
Blood flow in a steady magnetic field has been of great interest over the past years.Many researchers have examined the effects of magnetic fields on velocity profiles and arterial pressure, and major studies focused on steady or sinusoidal flows. In this paper we present a solution for pulsed magnetohydrodynamic blood flow with a somewhat realistic physiological pressure wave obtained using a windkessel lumped model. A pressure gradient is derived along a rigid vessel placed at the output of a compliant module which receives the ventricle outflow. Then, velocity profile and flow rate expressions are derived in the rigid vessel in the presence of a steady transverse magnetic field. As expected, results showed flow retardation and flattening. The adaptability of our solution approach allowed a comparison with previously addressed flow cases and calculations presented a good coherence with those well established solutions.
Origine | Fichiers produits par l'(les) auteur(s) |
---|