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Pulsed Magnetohydrodynami
 blood �ow in a rigid vesselunder physiologi
al pressure gradientDima Abi-Abdallah † , Agnès Dro
hon †, Vin
ent Robin ‡, and Odette Fokapu †

† Biome
hani
s and Bioengineering, University of Te
hnology of Compiègne, Fran
e
‡ Laboratory of Applied Mathemati
s, University of Te
hnology of Compiègne, Fran
e(June 2007)Blood �ow in a steady magneti
 �eld has been of great interest over the past years. Many re-sear
hers have examined the e�e
ts of magneti
 �elds on velo
ity pro�les and arterial pressure, andmajor studies fo
used on steady or sinusoidal �ows. In this paper we present a solution for pulsedmagnetohydrodynami
 blood �ow with a somewhat realisti
 physiologi
al pressure wave obtainedusing a windkessel lumped model. A pressure gradient is derived along a rigid vessel pla
ed at theoutput of a 
ompliant module whi
h re
eives the ventri
le out�ow. Then, velo
ity pro�le and �owrate expressions are derived in the rigid vessel in the presen
e of a steady transverse magneti
 �eld.As expe
ted, results showed �ow retardation and �attening. The adaptability of our solution ap-proa
h allowed a 
omparison with previously addressed �ow 
ases and 
al
ulations presented a good
oheren
e with those well established solutions.Keywords: Stati
 magneti
 �eld, magnetohydrodynami
 intera
tions, Hall e�e
t, windkessel, lumpedmodel.1 Introdu
tionThe in
rease in exposure to high magneti
 �elds 
aused by the wide use of Mag-neti
 Resonan
e Imaging (MRI) as a standard medi
al pro
edure, has raised a
on
ern in the resear
h 
ommunity and 
onstituted an in
entive for studyingthe e�e
ts of magneti
 �elds on human physiology and its impa
t on patientshealth. Espe
ially that, in striving to a
hieve higher resolution and greaterspe
tral separation, the MRI s
anners stati
 magneti
 �elds keep augmenting.Studies evaluating the e�e
t of human or animal exposure to magneti
 �eldshave shown no major 
hanges, ex
ept for an in
rease of systoli
 blood pressureas well as alterations of the ele
tro
ardiogram (ECG) signal manifested as el-evations of the T wave, all of whi
h are due to blood �ow.The movement of a 
ondu
ting �uid, su
h as the blood, in an externally appliedCorresponding author. Email: dima.abi-abdallah�u-psud.fr



2magneti
 �eld is governed by the laws of magnetohydrodynami
s. When thebody is subje
ted to a magneti
 �eld the 
harged parti
les of the blood �ow-ing transversally to the �eld get de�e
ted by the Lorentz for
e thus indu
ingele
tri
al 
urrents and voltages, a
ross the vessel walls and in the surround-ing tissues, strong enough to be dete
ted at the surfa
e of the thorax in theECG. Furthermore, the intera
tions between these indu
ed 
urrents and theapplied magneti
 �eld 
an 
ause a redu
tion of �ow rate and thus a rea
tive
ompensatory in
rease in blood pressure in order to retain a 
onstant volume�ow rate.Magneti
 �eld intera
tions with blood �ow have been demonstrated by mul-tiple authors throughout in vitro experiments [1, 2℄ where pressure and �owrate were measured, as well as in vivo studies su
h as [3,4℄ where animal ECGalterations have been observed, and [5℄ where the e�e
ts on human vital signswere found to 
onsist essentially in an arterial pressure in
rease.Theoreti
al magnetohydrodynami
 blood �ow 
al
ulations have, however, beenaddressed mu
h earlier and go ba
k as far as the early sixties. Kor
hevskii andMaro
hnik [6℄ �rst proposed a velo
ity pro�le solution for blood �ow betweentwo parallel plates under a 
onstant pressure gradient with a perpendi
ularmagneti
 �eld, under the assumption that blood is newtonian. Later otherstudies fo
used on �ow in a rigid 
ir
ular tube with non 
ondu
ting wallspla
ed in a transverse magneti
 �eld to o�er a more realisti
 model for blood�ow in vessels. In this 
ase, the most 
omplete solution of the magnetohydro-dynami
 equations of a 
ondu
ting �uid was proposed by Gold [7℄. Setting a
onstant pressure gradient, Gold derived expressions for the velo
ity pro�leas well as indu
ed �elds and voltages. Vardanyan [8℄ subsequently publishedan approximate steady solution where velo
ity pro�le and �ow rate were 
al-
ulated by negle
ting the indu
ed �elds. More re
ent studies were essentiallybased on these founding works, su
h as Keltner et al. [1℄ where a 
omparisonwas established between the results of Gold and Vardanyan to assess the 
onse-quen
es of negle
ting the indu
tions. With the same hypothesis as Vardanyan,Sud et al. [9℄ later dealt with a sinusoidal pressure gradient that modeled a bit
loser the pulsed nature of blood �ow in arteries. The hypothesis of 
ondu
t-ing walls was not introdu
ed until Kinou
hi et al. [10℄ who in
luded indu
tionsin the vessel and the surrounding tissues in the steady �ow 
ase in order toevaluate the indu
ed ECG superimposed voltages.In this work, we revisit the �ow of blood as a newtonian �uid, in a 
ir
ularrigid vessel, with non 
ondu
ting walls, in the presen
e of a transverse 
onstantmagneti
 �eld. Nevertheless, instead of taking a 
onstant pressure gradient ora sinusoidal one, we apply a realisti
 pulsed pressure gradient derived usinga windkessel lumped model, where the 
ompliant module provides the input�ow into the rigid vessel. Then, negle
ting indu
ed �elds, we solve the magne-tohydrodynami
 equations to obtain velo
ity pro�le and �ow rate expressions.



3The fa
t that our resolution method is based on Fourier de
omposition makesthe solutions easily adaptable to steady or sinusoidal 
ases, thus allowing a
omparison with the previous well established studies.2 General equations and solutionThe �ow of a 
ondu
ting in
ompressible newtonian �uid in the presen
e of amagneti
 �eld is de�ned by a 
ombination of Maxwell's equations on one hand,and the Navier-Stokes equation in
luding the magneti
 for
e on the other, alongwith the 
onservation equation, as well as Ohm's law.If we negle
t the indu
ed �elds, the velo
ity pro�le 
an be solely de�ned bythe Navier-Stokes equation, where the magneti
 for
e term is evaluated usingOhm's law,
ρ

(

∂~u

∂t
+
(

~u · ~∇
)

~u

)

= −~∇p + η∆~u + σ
(

~u ∧ ~B
)

∧ ~B , (1)where ~B is the magneti
 �eld, ~u, ρ, η, σ are respe
tively the �uid velo
ity,density, vis
osity and 
ondu
tivity and ~∇p is the pressure gradient.By assuming that the �ow is unidire
tional, axisymmetri
 with no swirl in a

Figure 1. Flow model geometryThe vessel is represented by a 
ylindri
al 
ondu
t where blood �ows along the Oz axis, in thepresen
e of a transverse steady magneti
 �eld oriented in the Ox dire
tion.
ir
ular rigid vessel, its velo
ity 
an be written as ~u = (0, 0, u(r̃, t)) (�g. 1). The�uid pressure is thus a fun
tion of the position z and time. The external 
on-stant magneti
 �eld is applied transversally su
h as ~B = (B0 cos θ,−B0 sin θ, 0)and the vessel is 
onsidered to have non 
ondu
ting walls. The �ow wouldtherefore be governed by the Oz proje
tion of (1) whi
h expressed in 
ylindri-
al 
oordinates gives,
a2

ν

∂u(r̃, t)

∂t
= g(t) +

∂2u(r̃, t)

∂r̃2
+

1

r̃

∂u(r̃, t)

∂r̃
− H2

au(r̃, t) , (2)



4with r̃ = r
a , where a represents the vessel radius, Ha = B0a

√

σ
η is the Hart-mann number, ν = η

ρ is the kinemati
 vis
osity, and
g(t) = −

a2

η

∂p(t, z)

∂z
, (3)with boundary 
ondition at the walls u(1, t) = 0.The proposed resolution method 
onsists of a Fourier de
omposition, followedby a Hankel transform.Fourier series de
omposition. The pulsed �ow studied here is periodi
 withperiod T, inverse of the 
ardia
 frequen
y. u(r̃, t) and g(t) are thus T periodi
time fun
tions that 
an be de
omposed in Fourier series su
h as,

u(r̃, t) =
+∞
∑

k=−∞

uk(r̃)eiωkt where: uk(r̃) =
1

T

∫ T

0

u(r̃, t)e−iωkt dt

g(t) =

+∞
∑

k=−∞

gkeiωkt where: gk =
1

T

∫ T

0

g(t)e−iωkt dtwith: ωk = k 2π
T .By repla
ing in (2) we get,

a2

ν

+∞
∑

k=−∞

iωkuk(r̃)eiωkt =

+∞
∑

k=−∞

gkeiωkt +

+∞
∑

k=−∞

(

∂2uk(r̃)

∂r̃2
+

1

r̃

∂uk(r̃)

∂r̃

)

eiωkt

− H2
a

+∞
∑

k=−∞

uk(r̃)eiωkt

⇔
a2

ν
iωkuk(r̃) = gk + ∆uk(r̃) − H2

auk(r̃) ∀k ∈ Z . (4)Hankel Transform. For a fun
tion f(r) de�ned over [0, 1], the zero orderHankel transform is de�ned [11℄ as,
H(f) = (f∗

n)n∈Z
; f∗

n =

∫ 1

0

rf(r)J0(rλn) dr ;with the following properties,
H(∆f(r)) = −λ2

nf∗

n (if f(1) = 0) and H(cste) =
cste

λn
J1(λn) ,



5where λn are the roots of Bessel fun
tion J0(x).Knowing that u(1, t) = 0 ⇔ uk(1) = 0 ∀k ∈ Z, applying the Hankel trans-form on equation (4) yields,
u∗

k,n =
J1(λn)

λn

(

iωk
a2

ν + λ2
n + H2

a

)gk . (5)Solution. To derive the solution we must inverse the Hankel transform toget the velo
ity's Fourier 
oe�
ients and then establish the velo
ity pro�leexpression.We know that if H(f) = f∗
n , then the inverse transform gives f(r) su
h as,

f(r) = 2
∑∞

n=1
J0(λnr)
J1(λn)2 f∗

n.From (5) we derive,
uk = 2

∞
∑

n=1

J0(λnr̃)

λnJ1(λn)

gk

iωk
a2

ν + λ2
n + H2

a

, (6)and therefore a velo
ity pro�le,
u(r̃, t) = 2

∞
∑

k=−∞

∞
∑

n=1

J0(λnr̃)

λnJ1(λn)

gk

iωk
a2

ν + λ2
n + H2

a

eiωkt . (7)The �ow rate will then be given as,
q(t) =

∫∫

A

u dA =

∫ 2π

0

∫ a

0

u(r, t)rdrdθ

= 4πa2
∞
∑

k=−∞

∞
∑

n=1

eiωkt

λnJ1(λn)

gk

iωk
a2

ν + λ2
n + H2

a

∫ 1

0

J0(λnr̃)r̃dr̃ .Using the fa
t that ∫ xnJn−1(x)dx = xnJn(x) ( [12℄, p.137), we get,
q(t) = 4πa2

∞
∑

k=−∞

∞
∑

n=1

eiωkt

λ2
n

gk

iωk
a2

ν + λ2
n + H2

a

. (8)3 Pressure gradient expressionIn the literature, studies 
on
erning pulsed �ows in rigid tubes usually 
onsidersinusoidal pressure gradients [11℄ and [9℄. In this work, in order to solve the ve-lo
ity pro�le, we seek to impose a realisti
 physiologi
al pressure gradient. Forthis, we use the 3-element Windkessel lumped model where a 
ompliant mod-ule represents the large arteries and a pure resistan
e represents the peripheralrigid vessels. We then derive a pressure gradient, governed by the 
ompliantmodule, to be applied on a rigid vessel beyond the large arteries.Lumped models are often used to represent blood �ow in the arterial system.



6
(a) 2-element Windkessel (b) 3-element WindkesselFigure 2. Windkessel lumped modelsPv(t):left ventri
ular pressure, Pa(t):aorti
 pressure, Q(t):output �ow rate of the left ventri
le,

Q1(t):input �ow rate to the peripheral vessels, Ra:resistan
e of the aorta and the large arteries,
C:
omplian
e of the aorta and large arteries, Rp:total peripheral resistan
e of small arteries,arterioles and 
apillariesThey rely on an analogy with ele
tri
 
ir
uits where 
urrents represent ar-terial blood �ows and voltages represent arterial pressures. In su
h models,resistan
es stand for resistan
e to �ow (arterial and peripheral) resulting fromvis
ous dissipation inside the vessels, 
apa
itors represent volume 
omplian
eof the vessels, and indu
tors represent blood inertia.In the 
ir
ulatory system, the small 
aliber arteries 
an be 
onsidered as rigid.These arteries get at their input a �ow rate imposed by the large 
ompliantarteries and 
an be modeled using pure resistan
es [13℄.In the following se
tion we will establish a model that will allow us to evaluatethis �ow rate and therefore dedu
e an expression of pressure gradient along arigid vessel.The Windkessel model, 
on
eived by Otto Frank in 1899 and inspired by air
hamber pumps used in �re engines, is a quite simple 
on�guration that de-s
ribes the �ow at the heart output and into the systemi
 arteries. The model
onsists of an elasti
 a

umulation 
hamber pla
ed in a rigid 
ondu
t pre
ededby a valve and followed by a Poiseuille hydrauli
 resistan
e. When the valve isopen (systole) part of the ventri
ular �ow a

umulates in the 
hamber, and therest �ows in the resistan
e. When the valve is 
losed (diastole) the blood whi
hhad a

umulated in the 
hamber is for
ed out through the resistan
e. This ele
-tri
al model was initially 
on
eived with two elements 
omprising a 
apa
itorthat represents the elasti
ity of large arteries and a peripheral resistan
e thatstands for the resistan
e of small arteries and arterioles (�g.2(a)). The inputpressure of the 
ir
uit is the left ventri
ular pressure, assuming a null pressureat the vena 
ava. A diode pla
ed at the 
ir
uit's entry plays the role of the aor-ti
 valve whi
h lets the �ow get through only when the ventri
ular pressure issuperior to that of the aorta. This 2-element model was later transformed intoa 3-element model (�g.2(b)) where an additional resistan
e was introdu
ed totake into a

ount the resistan
e of the aorta and large arteries [14℄ .The lattermodel was found to produ
e quite realisti
 pressure and �ow rate 
urves that
orre
tly reprodu
e experimental data [15℄ and thus remains very widely usedto this date.



7In the following se
tion we adopt the 3-element windkessel model and 
om-pute an expression for pressure along a pure resistan
e at the output of the
ompliant module. We �rst de�ne a mathemati
al expression to model realventri
ular pressure input su
h as [15℄,
Pv(t) =

{Pmax

2 (1 − cos 2γt) 0 ≤ t ≤ tp
0 tp ≤ t ≤ T

(9)with γ = π
tp

.The di�erential equation de�ning the 3-element 
ir
uit 
an be written as,
dPa

dt
+

Pa

τ
=

Q(t)

C
, (10)where τ = CRp .Solving for Pa(t) in ea
h 
ardia
 
y
le phase : diastole and isovolumetri

ontra
tion phases where Q(t) = 0, as well as the eje
tion phase where

Q(t) = Pv(t)−Pa(t)
Ra

, while ensuring 
urve 
ontinuity between the phases yieldsthe aorti
 pressure expression,
Pa(t) =











Pse
−

t+T−ts
τ 0 ≤ t ≤ t1 (isovolumetri
 
ontra
tion)

Ke−
t−t1
Zτ + A(t) t1 ≤ t ≤ ts (eje
tion)

Pse
−

t−ts
τ ts ≤ t ≤ T (diastole) (11)with,

A(t) =
Rp

Ra + Rp

Pmax

2

(

1 −
2γZτ sin 2γt + cos 2γt

1 + 4γ2Z2τ2

)

;

Ps = Pv(ts) ; K = Pv(ts)e
−

t1+T−ts
τ − A(t1) ; Z =

Ra

Ra + Rp
;

t1 denotes the beginning of the eje
tion phase when Pa be
omes less than Pv,
ts denotes the end of systole when Pa be
omes greater than Pv, and tp isthe instant at whi
h the pressure in the ventri
le drops to zero, and T is the
ardia
 
y
le period.The �ow rate in the peripheral resistan
e is given by Q1(t) = Pa(t)

Rp
and thepressure drop along a peripheral vessel of radius a and length L would beobtained by multiplying the �ow rate with a hydrauli
 Poiseuille resistan
e

8ηL
πa4 yielding dP (t)

L = − 8η
πa4 Q1(t), and thus,

−
∂p(t, z)

∂z
=

8η

πa4















Ps

Rp
e−

t+T−ts
τ 0 ≤ t ≤ t1

K
Rp

e−
t−t1
Zτ + A(t)

Rp
t1 ≤ t ≤ ts

Ps

Rp
e−

t−ts
τ ts ≤ t ≤ T

(12)



8In order to derive the velo
ity pro�le expression by (7) we need to 
ompute theFourier 
oe�
ients gk of g(t) de�ned in (3). After Fourier integral 
al
ulationfor ea
h of the three phases,
gk =

1

T

∫ T

0

−
a2

η

∂p(t, z)

∂z
e−iωkt dt

=
8

Tπa2Rp

(
∫ t1

0

Pse
−

t+T−ts
τ e−iωkt dt +

∫ ts

t1

(

Ke−
t−t1
Zτ + A(t)

)

e−iωkt dt

+

∫ T

ts

Pse
−

t−ts
τ e−iωkt dt

)

,we get,
gk =

8

Tπa2Rp

{

Ps

1
τ + iωk

e−
T−ts

τ

(

1 − e−t1( 1
τ
+iωk) − e−iωkT + e−ts( 1

τ
+iωk)+T

τ

)

+
K

1
Zτ + iωk

e
t1
Zτ

(

e−t1( 1
Zτ

+iωk) − e−ts( 1
Zτ

+iωk)
)

+
Rp

Ra + Rp

Pmax

2

[

fk −
e−iωkt[(−iωk − 2γǫ) cos(2γt) + (2γ − iωkǫ) sin(2γt)]

(1 + 4γ2Z2τ2)(4γ2 − ω2
k)

∣

∣

∣

∣

ts

t1

]}

,(13)where ǫ = 2γZτ and fk =

{

ts − t1 k = 0
e−iωkt1−e−iωkts

iωk
k 6= 0 .4 ResultsAll numeri
al 
omputations were done using the parameter values shown intable 1.Figure 3 shows the pressure and �ow rate 
urves 
omputed using the 3-elementWindkessel model (�g.2(b)). They agree very well with measured pressure
urves shown in [16℄. From these 
omputed results we 
an 
al
ulate other 
ar-dia
 
y
le parameters. We �nd a mean 
ardia
 output of 77cm3/s (4.62l/min),a stroke volume of 62cm3 and a systole duration of ts = 30%T , all 
oin-
iding well with the normal range values (Comolet [17℄, for example, gives

C.O. ≈ 87cm3/s, S.V. ≈ 70cm3 and ts ≈ 37%T for Pmax = 140mmHg).Figure 4(a) shows the pressure gradient wave in the rigid vessel with radius
a, as well as the �ow rates for di�erent Hartmann numbers. It 
ould be notedthat for small Ha the variation dynami
s of the �ow rate (and velo
ity) is a lotslower than that of the pressure gradient, however for larger Ha the �ow rate



9W indkessel 
ir
uit 
omponents
Ra 0.0334 mmHg.s/cm3

Rp 1 mmHg.s/cm3

C 0.77 cm3/mmHgBlood 
hara
teristi
s
η 4.10−3 Pa.s
ρ 1050 kg/m3

σ 0.5 S/mV essel radius
a 0.3 cmCardia
 
y
le parameters

freq 75 bpm
Pmax 120 mmHg

tp 50%T sTable 1. Numeri
al valuesThe resistan
e and 
apa
itor values are 
hosen based on [15℄ and agreeing with [14℄, blood
hara
teristi
s are taken from [10℄ and the 
ardia
 
y
le parameters are 
hosen to mat
h theaverage typi
al values.

Figure 3. Ventri
ular pressure wave and aorti
 pressure and �ow rate 
urvesPressure and �ow rate waves 
omputed using the windkessel model over two 
ardia
 
y
les at 75bpm. The ventri
ular pressure Pv(t) is set as in equation (9), the aorti
 pressure Pa(t) is
omputed by (11), and the aorti
 �ow rate (ventri
le output) is Q(t) =
Pv(t)−Pa(t)

Ra
urves tends to follow that of the pressure. The retardation of the movement
an also be 
learly depi
ted, as the �ow slows down when the magneti
 �eldintensity in
reases(�g.4(b)).Note that by applying the Poiseuille standard formula for stationary �ows
qpois = πa4

8η
∆p
∆z , in a vessel of the same 
aliber under a pressure gradient equalto the mean value of the 
omputed pulsed gradient, we would get approximatly

77cm3/s. Whi
h is the value we get by 
omputing the mean value of the pulsed�ow rate for Ha = 0.Given that a Poiseuille pro�le yields a maximum velo
ity Umax = a2

4η
∆p
∆z ≈

544cm/s, �gures 5(a) and 5(b) represent normalized velo
ity pro�les as ratiosto this value for Ha = 0 and Ha = 2 respe
tively.
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(a) Pressure gradient and �ow rate in a rigidvessel: The pressure gradient is 
al
ulated by(12), and the �ow rate by (8) for di�erent Hart-mann numbers for a pulsed �ow in a rigid ves-sel whi
h 
hara
teristi
 values are given in ta-ble 1 (b) Mean �ow rate as fun
tion of the Hart-man number: The graduations on the leftrepresent a �ow rate normalized as a ratioto a Poiseuille �ow rate, while the grad-uations on the right represent a �ow ratein cm3/sFigure 4. Flow rate for various �eld intensities

0

T

2T

0

0.5

1

0

0.2

0.4

0.6

0.8

1

Time

Normalized velocity profile (Ha=0) 

r/a

U
 /(

U
m

ax
P

oi
s)

(a) Ha=0 0

T

2T

0

0.5

1

0

0.2

0.4

0.6

0.8

1

Time

Normalized velocity profile (Ha=2) 

r/a

U
 /(

U
m

ax
P

oi
s)

(b) Ha=2Figure 5. Normalized velo
ity pro�lesThe velo
ity is 
omputed from (7) and the normalization is done respe
tively to the Poiseuille
Umax ≈ 544cm/s5 Comparison with other �ow typesIn this se
tion we dis
uss the obtained results by 
omparing them to other wellestablished 
ases of blood �ows, whether stationary or pulsed, in the presen
eof a magneti
 �eld or not, with or without indu
ed �elds.



115.1 Stationary �owsOne of the advantages of our resolution method using the Fourier series is thatwe 
an 
ompare the results of our pulsed �ow with a stationary one, simplyby limiting the 
al
ulations to the �rst harmoni
 k = 0. The pressure gradient
an then be expressed as −∂p
∂z = η

a2 g0 , the velo
ity pro�le and �ow rate wouldbe given by,
u0(r̃) =

g0

H2
a

(

1 −
I0(Har̃)

I0(Ha)

)

, (14)
q0 = 2πa2 g0

H2
a

(

1

2
−

I1(Ha)

HaI0(Ha)

)

, (15)where I0 and I1 are modi�ed Bessel fun
tions, and g0 is the mean value of g(t):
g0 = 1

T

∫ T
0 g(t) dt, whi
h expression 
an be 
al
ulated from (13) for ωk = 0.With no magneti
 �eld (Poiseuille �ow). The stationary well knownPoiseuille �ow in a rigid vessel is given by upois(r̃) = − a2

4η
∆p
∆z (1 − r̃2).By applying the same pressure gradient as des
ribed above, the velo
ity pro�le
an be expressed as,

upois(r̃) =
g0

4
(1 − r̃2) . (16)If we expand (14) for small values of Ha, while knowing that,

I0(x) =
∑∞

k=0
( 1

4
x2)

k

k!2 ( [18℄ p. 375), we get that,
lim

Ha→0
u0(r̃) = upois(r̃)Figure 6(a) 
ompares non dimensional �ow rates (2u0/g0) for various �eldintensities to a Poiseuille �ow (2upois/g0) in the absen
e of a magneti
 �eld. It
learly shows the in�uen
e of a magneti
 �eld whi
h is manifested by a �owretardation and a �attening of the velo
ity pro�le, whi
h is further a

entuatedas Ha in
reases.In the presen
e of a magneti
 �eld negle
ting indu
ed �elds. For k=0 (4)
an be written,

∆u0(r̃) − H2
au0(r̃) = −g0 .This is the same equation as established by Vardanyan [8℄ who studied the
ase of a steady �ow in a magneti
 �eld while negle
ting the indu
ed �elds,and for whi
h he derived the solution,

uvard(r̃) =
g0

H2
a

(

1 −
I0(Har̃)

I0(Ha)

)

.



12This mat
hes exa
tly with (14). Furthermore, if we 
ompare it to the expressionin (7) for k=0, we dedu
e that we must have,
2

∞
∑

n=1

J0(λnr̃)

λnJ1(λn)

1

λ2
n + H2

a

=
1

H2
a

(

1 −
I0(Har̃)

I0(Ha)

)

,whi
h we in fa
t �nd if we numeri
ally 
ompute the sum.In the presen
e of a magneti
 �eld with indu
ed �elds. Gold [7℄ establishedan exa
t solution for stationary blood �ow in a magneti
 �eld taking into
onsideration indu
ed 
urrent and magneti
 �eld,
ugold(r̃, θ) =

g0

2Ha

[

e−
Ha
2

r cos θ
∞
∑

n=0

ǫn

I ′n
(

Ha

2

)

In

(

Ha

2

)In

(

Ha

2
r

)

cosnθ

+ e
Ha
2

r cos θ
∞
∑

n=0

(−1)nǫn

I ′n
(

Ha

2

)

In

(

Ha

2

)In

(

Ha

2
r

)

cosnθ

]

, (17)where,
ǫn =

{

1 pour n = 0
2 pour n > 0

(18)To 
ompare this θ dependent velo
ity pro�le to our axially symmetri
 
ase, wetake the mean velo
ity,
ūgold = g0

∞
∑

n=0

(−1)nǫn

I ′n(Ha

2 )

HaIn

(

Ha

2

)

[(

1 +
n2

(

Ha

2

)2

)

I2
n

(

Ha

2

)

− I
′2
n (

Ha

2
)

]

, (19)and 
ompare it to
ū0 = 2

g0

H2
a

(

1

2
−

I1(Ha)

HaI0(Ha)

)

, (20)
omputed from (14) by averaging over the 
ross se
tional area.In a

ordan
e with what was demonstrated by Keltner et al. [1℄, we �nd thatnegle
ting indu
ed �elds leads to an overestimation of the retardation and�attening e�e
ts, espe
ially for high intensity �elds (�g. 6(b)).5.2 Periodi
 �owsStudies on periodi
 �ows generally 
onsider sine shaped pressure gradients. Inorder to 
ompare results found in the literature to ours it su�
es to restrainour pressure gradient to its �rst harmoni
.
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(b) Comparison between the mean velo
ity
omputed from (20) and Gold's exa
t solution(19)Figure 6. Comparison to other steady �owsIn the absen
e of any magneti
 �eld (Womersley �ow). The sinusoidal �owin a rigid 
ondu
t has been studied by many authors, but the most signi�
antresults were established by Womersley [19℄. For a pressure gradient su
h as,
−

1

ρ

∂p(t)

∂z
= a0 + a1e

iωt . (21)Womersley solved a velo
ity pro�le given by
uwom(r̃, t) =

a0a
2

4ν
(1 − r̃2) +

a1a
2

iνα2

[

1 −
J0

(

i3/2αr̃
)

J0

(

i3/2α
)

]

eiωt , (22)where α = a
√

ω
ν is the Witzig-Womersley number.In our 
al
ulations, the pressure gradient 
orresponding to the �rst har-moni
 along with the 
ontinuous 
omponent 
an be written as −1

ρ
∂p
∂z =

ν
a2

(

g0 + g1e
iωt
). In order to 
ompare our results with those of Womersley, wemust set a0 = ν
a2 g0 and a1 = ν

a2 g1.Equation (22) 
an thus be written as,
uwom(r̃, t) =

g0

4
(1 − r̃2) +

g1

iα2

[

1 −
J0

(

i3/2αr̃
)

J0

(

i3/2α
)

]

eiωt , (23)and the �ow rate would be given by,
qwom(t) = 2πa2

(

g0

16
+

g1

iα2

[

1

2
−

J1

(

i3/2α
)

i3/2αJ0

(

i3/2α
)

]

eiωt

)

. (24)Afterwards we 
ompute the velo
ity and �ow rate using (23) and (24) on onehand, and (7) and (8) on the other for 0 ≤ k ≤ 1 . We verify, in fa
t, that in the
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(a) Non dimensional �ow rates 2q

g0πa2 with q 
al-
ulated by (8) for various Ha 
ompared to theWomersley �ow where q is given by (24) (b) Plots of 2q

g1πa2 where q is 
al
ulated by(8) and 
ompared to Sud's 
ase where q isgiven by (30) for various HaFigure 7. Comparison with other sinusoidal �owsabsen
e of any magneti
 �eld (Ha = 0) we get the same results as Womersley.Figure 7(a) plots �ow rates 
al
ulated for various Ha as well as a �ow rate
urve obtained by Womersley's expression, with whi
h a perfe
t mat
h 
an bedepi
ted for Ha = 0.In the presen
e of a magneti
 �eld negle
ting indu
ed �elds. Sud et al. [9℄
onsidered the 
ase of a sinusoidal �ow in a rigid 
ondu
t in the presen
eof a external transverse magneti
 �eld while negle
ting the indu
tions. Theyobtained non dimensional velo
ity pro�le su
h as,
u∗

sud(r
∗, t∗) =

A∗

i +
H2

a

Re



1 −
J0

(

√

−H2
a − iRe r∗

)

J0

(

√

−H2
a − iRe

)



 eit∗ , (25)by imposing a pressure gradient given by,
−

∂p∗

∂z∗
= A∗eit∗ , (26)with,

z∗ = z/a , r∗ = r/a , t∗ = ωt , u∗ =
u

ωa
, p∗ =

p

ρa2ω2
, A∗ =

A

ρω2a
, Re =

ωa2

ν
.



15Winding up to the dimensional form we get,
usud(r

∗, t) =
A

ρ
(

iω +
H2

aν
a2

)









1 −

J0

(

√

−H2
a − iωa2

ν r∗
)

J0

(

√

−H2
a − iωa2

ν

)









eiωt , (27)
−

∂p

∂z
= Aeiωt . (28)In order to 
ompare those results with our 
al
ulations we set A

ρ = ν
a2 g1 in(27) and k = 1 in (7).Using the Witzig-Womersley number α = a

√

ω
ν we obtain the following velo
-ity and �ow rate expressions,

usud(r
∗, t) =

g1

iα2 + H2
a



1 −
J0

(

√

−H2
a − iα2 r∗

)

J0

(

√

−H2
a − iα2

)



 eiωt , (29)
qsud(t) =

2πa2g1

iα2 + H2
a





1

2
−

J1

(

√

−H2
a − iα2

)

√

−H2
a − iα2 J0

(

√

−H2
a − iα2

)



 eiωt . (30)Note that for Ha = 0 we get the same expressions as those of the Womersley's�ow with no 
ontinuous 
omponent.By 
al
ulating the velo
ities and �ow rates using (29) and (30) we get mat
hingresults with 
al
ulations by (7) and (8). Figure 7(b) plots di�erent �ow rate
urves 
omputed using our expression as well as that of Sud for various Ha,the 
urves superimpose perfe
tly for the same �eld intensity.In the presen
e of a magneti
 �eld with indu
ed �elds. To the best ofour knowledge, up to this date, no study has 
onsidered the 
ase of a periodi
blood �ow in the presen
e of a magneti
 �eld while taking into 
onsiderationindu
ed �elds.6 Dis
ussion6.1 On the use of the windkessel modelThe pulsed pressure gradient used in this work is derived from a lumpedmodel. The major disadvantage of su
h models, is that they don't take intoa

ount the pressure wave propagation phenomenon. They behave as if thepropagation were immediate. This however is of no in
onvenien
e in the 
ase



16of this study sin
e we are interested in rigid vessel �ows, where in fa
t thepressure propagation is very fast. If propagation were to be 
onsidered here itshould be in
orporated in the large arteries, however in our 
ase this wouldhave only introdu
ed a 
ertain delay and amplitude redu
tion in the rigidvessel. Hen
e a windkessel model o�ers a simple enough 
on�guration withoutbeing very detrimental sin
e we are not studying the entire system and nottrying to simulate waves with exa
t values for a given vessel.The used windkessel model might be further expanded to in
lude fourelements by adding an indu
tor to represent the blood inertia in the largearteries. This will ensure a better �t of real pressure waves [20℄. It 
ould alsobe enhan
ed by 
hanging the output load and repla
ing Rp with anotherwindkessel model, thus introdu
ing indu
tors and 
apa
itors for small arteries.Nevertheless, it has been demonstrated that this would not greatly improvethe pressure and �ow rate 
urves observed at the top of the 
ir
ulatory tree [15℄.6.2 On the 
hoi
e of vessel model and �ow 
onditionsIn this study, a realisti
 pressure gradient is derived along a rigid vessel pla
edat the output of a 
ompliant module whi
h re
eives the ventri
le out�ow. The
ompliant module in
ludes the resistan
e and 
omplian
e of the aorta and largearteries. The vessel pla
ed at the output of the elasti
 
hamber had thus tobe of a small 
aliber (just small enough to be 
onsidered as rigid [13℄, andbig enough not to be too far down the 
ir
ulatory tree). Sin
e no bifur
ationsare taken into a

ount, the rigid vessel re
eives all the aorti
 �ow, and thisleads to 
al
ulated �ow rates (and velo
ities) that are mu
h higher than thereal �ow rates that o

ur generally in arteries of 0.3cm radius (for example,in the femoral artery whi
h has a radius of 0.4cm, the blood velo
ity rea
hesa maximum of 100cm/s [15℄ only, whereas in our 
al
ulations, we obtainedvelo
ities rea
hing �ve times this physiologi
al value). We 
ould obtain rea-sonable rates by inserting parallel bran
hes in the periphery, thus forming atree of resistan
es where ea
h resistan
e bifur
ates in two, at ea
h level of thetree. Then the �ow would be 
ut in half at ea
h bifur
ation point, so that atthe se
ond level, for example, the �ow would have already been redu
ed toone fourth its original value. With this rough approximation of the peripheral
ir
ulatory tree, all 
al
ulations would remain un
hanged, then, depending onthe level at whi
h the vessel of interest is found the resulting values would bedivided by 2level.However, we should note that, during exposure to stati
 magneti
 �elds it isthe large arteries �ows that are mostly a�e
ted by the magneti
 intera
tions.In order to get an estimate of �ows that might o

ur in a large vessel, we
ould arti�
ially pla
e a 1cm radius vessel at the output of our 
ompliant
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Figure 8. Pressure gradient and �ow rate in a 1cm radius rigid vesselThe pressure gradient is 
al
ulated by (12), and the �ow rate by (8) for di�erent Hartmannnumbersmodule, and perform 
al
ulations (shown in �g. 8) similar to those presentedin �gure 4(a) (the 
urve 
orresponding to Ha = 5 is not shown in order tobe able to enlarge the ordinate s
ale). When 
omparing both �gures, we 
ansee that the os
illations amplitudes are more dampened here. Note that thenon-dimensional graph 
orresponding to the data of �g.8 would be the same asthat of �g.4(b). Even though the 
onsidered vessel has the same 
aliber as theaorta, the pressure gradient and �ow values obtained here would not re�e
t
losely those observed in the aorta, sin
e the aorta is not rigid but 
ompliantand it re
eives it's �ow dire
tly from the ventri
le and not through the modeledwindkessel 
hamber.Furthermore, be
ause of the growing �eld of small animal imaging using MRI,it would also be interesting to assess to what extent MRI measurements 
analter the haemodynami
s in mi
e. However, obtaining a real waveform of themouse blood �ow rate would ne
essitate a res
aling of the model. Some esti-mation of mean �ow 
hara
teristi
s 
an be obtained from our result plots sin
ethey represent non dimensional values versus the Hartmann number. Even ifthe magneti
 �elds used for small animals imaging are a lot greater than thoseused for humans, their e�e
t would remain negligible sin
e the mi
e vessels,their 
ardia
 output and their �ow rate are a lot smaller than those of humans.



18For example, the �ow in a human aorta (1cm radius) subje
ted to a 1.5T mag-net would yield a Hartmann number of 0.17, whereas (
onsidering that mi
eand human blood have the same vis
osity and 
ondu
tivity), the �ow in themouse aorta (0.6mm radius a

ording to [21℄) in a 10T magnet would produ
e
Ha = 0.07, thus indu
ing a mean �ow rate redu
tion smaller than 0.1%.6.3 On sum 
onvergen
eIn order to numeri
ally evaluate the velo
ity and �ow rate expressions whi
h
ontain in�nite sums, it was ne
essary to de�ne a limit in order to sum overa �nite number of terms. In other words, it was essential that we examine thesum 
onvergen
e to de�ne a stop point after whi
h the added terms would notsigni�
antly modify the obtained sum.Sum over k. Referring to equation (6) while knowing that,

uk

gk
= 2

∞
∑

n=1

J0(λnr̃)

λnJ1(λn)

1

iωk
a2

ν + λ2
n + H2

a

< 1 ,is uniformly limited and de
reasing with k, it 
ould be assumed that if aftera 
ertain value K the harmoni
s gk for |k| > K be
ome negligible relativelyto the other harmoni
s, the uk for |k| > K will also be negligible relatively toall other uk for |k| < K. Therefore extending the sum to in
lude all signi�
ant
gk ensures that all signi�
ant uk are in
luded. A harmoni
 gk is said to besigni�
ant if it is ne
essary to the a

urate re
onstru
tion of g(t). It su�
esthen to �nd K su
h as,

g(K)(t) =

K
∑

k=−K

gke
iωkt ≈ g(t) .Figure 9(a) 
ompares the pressure gradient 
urve to various plots of η

a2 g(K) fordi�erent values of K. It 
an be 
learly noted that beyond K = 7 the pressuregradient is �tted quite well.In order to evaluate the gradient's �tting pre
ision for a given K, we 
al
ulatea normalized mean error de�ned as,
NME(K) =

1

M

M
∑

i=1

∣

∣

∣

∣

∣

∣

(

−∂p
∂z

)

i
−
(

η
a2 g(K)

)

i
(

−∂p
∂z

)

i

∣

∣

∣

∣

∣

∣

, (31)where −∂p
∂z is 
al
ulated by (12), M is the number of points of the regardedtime fun
tions and the index i represents the ith point of the fun
tion (at time
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(a) Re
onstru
ted pressure gradient 
urves for var-ious values of K
(b) Normalized mean error on the pres-sure gradient re
onstru
tionFigure 9. Pressure gradient re
onstru
tion from η

a2 g(K)

ti).The evolution, in respe
t to K, of the normalized mean error is shown in �gure9(b), where a rapid de
line of the NME 
an be observed, until it stabilizes after
K = 50.To obtain the results presented in 4 we deemed a

eptable to sum over −50 ≤
k ≤ 50 only, with a NME(50) = 6.81 × 10−5. Note that to redu
e the errorto half its value we must extend the sum to K = 2000, thus summing with 40times the number of terms.Sum over n. Having set the k sum limits, we then fo
us on the n sum. Thenumber of terms N ne
essary for the 
onvergen
e of the sum over n depends onthe value of Ha and in
reases with it. This 
an be observed in �gure 10 whi
hshows �ow rate 
urves plotted for various values of N with three Ha numbers.It 
an be noted that for small Ha the 
onvergen
e is fast and is attained for
N = 5, whereas for large Ha it's not until N = 50 that we no longer observeany 
hanges in the 
urve shapes. By 
al
ulating the NME between two 
urvesfor di�erent values of N ,

NME(N1, N2) =
1

M

M
∑

i=1

∣

∣

∣

∣

∣

(

q(N1)

)

i
−
(

q(N2)

)

i
(

q(N2)

)

i

∣

∣

∣

∣

∣

, (32)we �nd that for Ha = 20, for example, going from N = 50 to N = 1000 onlyimproves the result by 4 × 10−5 i.e. EMN(50, 1000) = 4 × 10−5, hen
e wedeemed su�
ient to set N = 50.The in�uen
e of N 
an also be noted by 
omparison to Womersley and Sud's
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(a) Ha = 0 (b) Ha = 2 (
) Ha = 30Figure 10. Flow rate 
urves 
onvergen
e for di�erent values of Ha
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(a) Normalized mean error between �owrate 
urves 
al
ulated by (8) and those ofWomersley given by (24) for Ha = 0

(b) Normalized mean error between �owrate 
urves 
al
ulated by (8) and those ofSud 
omputed by (30) for various HaFigure 11. Normalized mean errors to other sinusoidal �owssinusoidal �ows. In fa
t the mean error rate between the 
urve (Ha = 0) andthat of Womersley depends on the number of terms in the sum over n, and itde
reases as that number in
reases (�g.11(a)). For example, for N = 5 we get
NME ≈ 7× 10−4 and NME ≈ 4.5× 10−5 for N = 50. The same also appliesfor Sud's �ow. Figure 11(b) shows the mean �ow rates errors for various Ha.When Ha in
reases, a larger N is needed to ensure 
onvergen
e. With N = 50we get an error of 9×10−5 for Ha = 30 (the same error is obtained for N < 15when Ha = 1) while for Ha < 10 the error remains < 2.7 × 10−5.6.4 On indu
ed magneti
 �eldsThe �ow redu
tion depi
ted in our results does not a

urately re�e
t the realmovement retardation upon exposure to magneti
 �elds, espe
ially very high



21ones. In fa
t, negle
ting the indu
ed �elds produ
es an overestimation of theretardation and �attening e�e
ts. However it is noteworthy to mention thatin real life situations like magneti
 resonan
e imaging the involved Hartmannvalues are very small (<< 2) making this approximation quite a

eptable, un-less of 
ourse we are interested in 
omputing indu
ed voltages. For example,in the extreme 
ase of a 15 Tesla magnet (i.e. Ha=0.5 for a = 0.3cm) theoverestimation of the mean velo
ity redu
tion amounts to 3.5% only. Never-theless, when dealing with larger vessels su
h as the aorta, one must be 
arfulusing this aproximation. For instan
e, negle
ting the indu
tions in a 10T �eldleads to a 10% overestimation, wherease 
onsidering a 15T magnet intensityprodu
es an additional 27% �ow redu
tion 
ompared to the exa
t solution.6.5 On magnetohydrodynami
 blood �ow in elasti
 vesselsStudying magnetohydrodynami
 blood �ow in elasti
 vessels would be veryinteresting, espe
ially sin
e it would allow a 
lose modeling of the ECG 
on-taminating voltages, whi
h are mainly generated in the aorta. Nevertheless,introdu
ing wall motion in the model would impede attaining an analyti
al so-lution while using a physiologi
al pressure gradient. Sud et al. [22℄ had proposeda �ow rate expression for a simple sinusoidal pressure gradient in an elasti
tube while negle
ting the indu
ed �elds. A novel approa
h is 
urrently in de-velopment [23℄, where the magneti
 for
es are in
orporated in one-dimensionalmodel equations. A numeri
al resolution of the established equations wouldprodu
e �ow results using a realisti
 pulsed pressure gradient while taking intoa

ount the indu
ed ele
tromagneti
 �elds.7 Con
lusionIn this work we studied the magnetohydrodynami
 �ow of blood in a rigidvessel in the presen
e of a stati
 magneti
 �eld. Even though some simplifyinghypothesis were made, the originality of this work 
onsists in applying a realphysiologi
al pressure gradient model. The gradient expression was obtainedfrom a lumped model where a windkessel 
ompliant module ensured the tran-sition between ventri
ular �ow and the rigid vessel input. The Fourier seriesbased solution made it possible to evaluate our results using previous well es-tablished solutions for both steady or sinusoidal blood �ows. As expe
ted, a
omparison with �ows in the absen
e of any magneti
 �eld showed the e�e
tsof a magneti
 �eld in terms of �ow redu
tion and velo
ity pro�le �attening.Moreover, a perfe
t mat
h was attained when 
omparing to solutions derivedin the presen
e of a magneti
 �eld when indu
tions were negle
ted, while a
omparison with the exa
t solution proved that the indu
ed �elds lessen the



22�ow redu
tion. These 
al
ulations 
an be further improved by enhan
ing thelumped model and extending the magnetohydrodynami
 equations to in
ludeindu
ed �elds.Referen
es[1℄ Keltner, J.R., Roos, M.S., Brakeman, P.R. and Budinger, T.F., 1990, Magnetohydrodynami
sof blood �ow. Magneti
 Resonan
e in Medi
ine, 16, 139�149.[2℄ Tasu, J.P., Mousseaux, E., Delou
he, A., Oddou, C., Jolivet, O. and Bittoun,J., 2000, Estima-tion of pressure gradients in pulsatile �ow from magneti
 resonan
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