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Pulsed Magnetohydrodynamic blood flow in a rigid vessel
under physiological pressure gradient
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Blood flow in a steady magnetic field has been of great interest over the past years. Many re-
searchers have examined the effects of magnetic fields on velocity profiles and arterial pressure, and
major studies focused on steady or sinusoidal flows. In this paper we present a solution for pulsed
magnetohydrodynamic blood flow with a somewhat realistic physiological pressure wave obtained
using a windkessel lumped model. A pressure gradient is derived along a rigid vessel placed at the
output of a compliant module which receives the ventricle outflow. Then, velocity profile and flow
rate expressions are derived in the rigid vessel in the presence of a steady transverse magnetic field.
As expected, results showed flow retardation and flattening. The adaptability of our solution ap-
proach allowed a comparison with previously addressed flow cases and calculations presented a good
coherence with those well established solutions.

Keywords: Static magnetic field, magnetohydrodynamic interactions, Hall effect, windkessel, lumped
model.

1 Introduction

The increase in exposure to high magnetic fields caused by the wide use of Mag-
netic Resonance Imaging (MRI) as a standard medical procedure, has raised a
concern in the research community and constituted an incentive for studying
the effects of magnetic fields on human physiology and its impact on patients
health. Especially that, in striving to achieve higher resolution and greater
spectral separation, the MRI scanners static magnetic fields keep augmenting.
Studies evaluating the effect of human or animal exposure to magnetic fields
have shown no major changes, except for an increase of systolic blood pressure
as well as alterations of the electrocardiogram (ECG) signal manifested as el-
evations of the T wave, all of which are due to blood flow.

The movement of a conducting fluid, such as the blood, in an externally applied
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magnetic field is governed by the laws of magnetohydrodynamics. When the
body is subjected to a magnetic field the charged particles of the blood flow-
ing transversally to the field get deflected by the Lorentz force thus inducing
electrical currents and voltages, across the vessel walls and in the surround-
ing tissues, strong enough to be detected at the surface of the thorax in the
ECG. Furthermore, the interactions between these induced currents and the
applied magnetic field can cause a reduction of flow rate and thus a reactive
compensatory increase in blood pressure in order to retain a constant volume
flow rate.

Magnetic field interactions with blood flow have been demonstrated by mul-
tiple authors throughout in vitro experiments [1,2]| where pressure and flow
rate were measured, as well as in vivo studies such as [3,4] where animal ECG
alterations have been observed, and [5] where the effects on human vital signs
were found to consist essentially in an arterial pressure increase.

Theoretical magnetohydrodynamic blood flow calculations have, however, been
addressed much earlier and go back as far as the early sixties. Korchevskii and
Marochnik [6] first proposed a velocity profile solution for blood flow between
two parallel plates under a constant pressure gradient with a perpendicular
magnetic field, under the assumption that blood is newtonian. Later other
studies focused on flow in a rigid circular tube with non conducting walls
placed in a transverse magnetic field to offer a more realistic model for blood
flow in vessels. In this case, the most complete solution of the magnetohydro-
dynamic equations of a conducting fluid was proposed by Gold [7]. Setting a
constant pressure gradient, Gold derived expressions for the velocity profile
as well as induced fields and voltages. Vardanyan [8] subsequently published
an approximate steady solution where velocity profile and flow rate were cal-
culated by neglecting the induced fields. More recent studies were essentially
based on these founding works, such as Keltner et al. [1] where a comparison
was established between the results of Gold and Vardanyan to assess the conse-
quences of neglecting the inductions. With the same hypothesis as Vardanyan,
Sud et al. [9] later dealt with a sinusoidal pressure gradient that modeled a bit
closer the pulsed nature of blood flow in arteries. The hypothesis of conduct-
ing walls was not introduced until Kinouchi et al. [10] who included inductions
in the vessel and the surrounding tissues in the steady flow case in order to
evaluate the induced ECG superimposed voltages.

In this work, we revisit the flow of blood as a newtonian fluid, in a circular
rigid vessel, with non conducting walls, in the presence of a transverse constant
magnetic field. Nevertheless, instead of taking a constant pressure gradient or
a sinusoidal one, we apply a realistic pulsed pressure gradient derived using
a windkessel lumped model, where the compliant module provides the input
flow into the rigid vessel. Then, neglecting induced fields, we solve the magne-
tohydrodynamic equations to obtain velocity profile and flow rate expressions.



The fact that our resolution method is based on Fourier decomposition makes
the solutions easily adaptable to steady or sinusoidal cases, thus allowing a
comparison with the previous well established studies.

2 General equations and solution

The flow of a conducting incompressible newtonian fluid in the presence of a
magnetic field is defined by a combination of Maxwell’s equations on one hand,
and the Navier-Stokes equation including the magnetic force on the other, along
with the conservation equation, as well as Ohm’s law.

If we neglect the induced fields, the velocity profile can be solely defined by
the Navier-Stokes equation, where the magnetic force term is evaluated using
Ohm’s law,

p(g—f+(aﬁ)a):—6p+nAﬁ+a(aAé)A§ : (1)

where B is the magnetic field, u, p, n, o are respectively the fluid velocity,

density, viscosity and conductivity and Vp is the pressure gradient.
By assuming that the flow is unidirectional, axisymmetric with no swirl in a

Figure 1. Flow model geometry

The vessel is represented by a cylindrical conduct where blood flows along the Oz axis, in the

presence of a transverse steady magnetic field oriented in the Oz direction.

circular rigid vessel, its velocity can be written as @ = (0,0, u(7,t)) (fig. 1). The
fluid pressure is thus a function of the position z and time. The external con-
stant magnetic field is applied transversally such as B = (B cos 6, — By sin 6, 0)
and the vessel is considered to have non conducting walls. The flow would
therefore be governed by the Oz projection of (1) which expressed in cylindri-
cal coordinates gives,

a? Ou(r,t)
Voo IOt e

— H?u(7,t) (2)



with 7 = =, where a represents the vessel radius, H, = Boa\/% is the Hart-
mann number, v = % is the kinematic viscosity, and

a® dp(t, 2)

g(t):_n Oz ) (3)

with boundary condition at the walls u(1,t) = 0.

The proposed resolution method consists of a Fourier decomposition, followed
by a Hankel transform.

Fourier series decomposition. The pulsed flow studied here is periodic with
period T, inverse of the cardiac frequency. u(7,t) and g(t) are thus T periodic
time functions that can be decomposed in Fourier series such as,
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+oo
a2

’L(.d t _ wit r 1 8“’1?(7:) wwyt
LY e zgkewz(aﬂ )

k=—o0 k=—o0 k=—o0

_ H Z uk et
k=—oc0
a? _ _ 5
= 7zwkuk(7°) = gr + Aug(7) — HZug(7) VkeZ . (4)

Hankel Transform. For a function f(r) defined over [0, 1], the zero order
Hankel transform is defined [11] as,

H() = (F)ne : 11 = /O rf () Jo(rAn) dr

with the following properties,

H(Af(r) ==Nofs GEf)=0)  and  Hlewe) = Z5h0)



where \,, are the roots of Bessel function Jy(z).
Knowing that u(1,t) = 0 < ug(1) =0 VEk € Z, applying the Hankel trans-
form on equation (4) yields,

J1(An)

ul . = ) 5
o An(z‘wk“—j+>\,%+Hg)gk 5)

Solution. To derive the solution we must inverse the Hankel transform to
get the velocity’s Fourier coefficients and then establish the velocity profile
expression.

We know that if H(f) = f , then the inverse transform gives f(r) such as,

f(r):22201§?>\rfn

From (5) we derive,
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and therefore a velocity profile,

=2 Z i i Sean T (")
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The flow rate will then be given as,
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Using the fact that fx" n—1(x)dx = 2" J,(x) ( [12], p.137), we get,
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3 Pressure gradient expression

In the literature, studies concerning pulsed flows in rigid tubes usually consider
sinusoidal pressure gradients [11] and [9]. In this work, in order to solve the ve-
locity profile, we seek to impose a realistic physiological pressure gradient. For
this, we use the 3-element Windkessel lumped model where a compliant mod-
ule represents the large arteries and a pure resistance represents the peripheral
rigid vessels. We then derive a pressure gradient, governed by the compliant
module, to be applied on a rigid vessel beyond the large arteries.

Lumped models are often used to represent blood flow in the arterial system.
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Figure 2. Windkessel lumped models
Pu(t):left ventricular pressure, Pa(t):aortic pressure, Q(t):output flow rate of the left ventricle,
Q1(t)input flow rate to the peripheral vessels, R, :resistance of the aorta and the large arteries,
C':compliance of the aorta and large arteries, Rp:total peripheral resistance of small arteries,

arterioles and capillaries

They rely on an analogy with electric circuits where currents represent ar-
terial blood flows and voltages represent arterial pressures. In such models,
resistances stand for resistance to flow (arterial and peripheral) resulting from
viscous dissipation inside the vessels, capacitors represent volume compliance
of the vessels, and inductors represent blood inertia.

In the circulatory system, the small caliber arteries can be considered as rigid.
These arteries get at their input a flow rate imposed by the large compliant
arteries and can be modeled using pure resistances [13].

In the following section we will establish a model that will allow us to evaluate
this flow rate and therefore deduce an expression of pressure gradient along a
rigid vessel.

The Windkessel model, conceived by Otto Frank in 1899 and inspired by air
chamber pumps used in fire engines, is a quite simple configuration that de-
scribes the flow at the heart output and into the systemic arteries. The model
consists of an elastic accumulation chamber placed in a rigid conduct preceded
by a valve and followed by a Poiseuille hydraulic resistance. When the valve is
open (systole) part of the ventricular flow accumulates in the chamber, and the
rest flows in the resistance. When the valve is closed (diastole) the blood which
had accumulated in the chamber is forced out through the resistance. This elec-
trical model was initially conceived with two elements comprising a capacitor
that represents the elasticity of large arteries and a peripheral resistance that
stands for the resistance of small arteries and arterioles (fig.2(a)). The input
pressure of the circuit is the left ventricular pressure, assuming a null pressure
at the vena cava. A diode placed at the circuit’s entry plays the role of the aor-
tic valve which lets the flow get through only when the ventricular pressure is
superior to that of the aorta. This 2-element model was later transformed into
a 3-element model (fig.2(b)) where an additional resistance was introduced to
take into account the resistance of the aorta and large arteries [14] .The latter
model was found to produce quite realistic pressure and flow rate curves that
correctly reproduce experimental data [15] and thus remains very widely used
to this date.



In the following section we adopt the 3-element windkessel model and com-
pute an expression for pressure along a pure resistance at the output of the
compliant module. We first define a mathematical expression to model real
ventricular pressure input such as [15],

Prnas
_ [Fmes (1 —cos2yt) 0<t<t,
Pv(t){o b<t<T 9)
with v = 7.
The differential equation defining the 3-element circuit can be written as,
dPa  Pa Q1)
-2 X\ 10
dt T c (10)
where 7 = CR,, .
Solving for Pa(t) in each cardiac cycle phase : diastole and isovolumetric
contraction phases where Q(¢t) = 0, as well as the ejection phase where

Qt) = w , while ensuring curve continuity between the phases yields
the aortic pressure expression,

P~ 5 0<t<t; (isovolumetric contraction)
Pa(t) ={ Ke~ 7+ + A(t) t <t<ts (ejection) (11)
Py =" ts <t <T (diastole)
with,
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t1 denotes the beginning of the ejection phase when Pa becomes less than Pu,
ts denotes the end of systole when Pa becomes greater than Pwv, and ¢, is
the instant at which the pressure in the ventricle drops to zero, and T is the
cardiac cycle period.

Pgit) and the
pressure drop along a peripheral vessel of radius a and length L would be
obtained by multiplying the flow rate with a hydraulic Poiseuille resistance

The flow rate in the peripheral resistance is given by Qi(t) =

L .. . dP(t
%(714 yielding —L( ) = —%Ql(t), and thus,
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In order to derive the velocity profile expression by (7) we need to compute the
Fourier coefficients gi of g(t) defined in (3). After Fourier integral calculation
for each of the three phases,
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4 Results

All numerical computations were done using the parameter values shown in
table 1.

Figure 3 shows the pressure and flow rate curves computed using the 3-element
Windkessel model (fig.2(b)). They agree very well with measured pressure
curves shown in [16]. From these computed results we can calculate other car-
diac cycle parameters. We find a mean cardiac output of 77em3 /s (4.621/min),
a stroke volume of 62ecm? and a systole duration of ¢, = 30%7 , all coin-
ciding well with the normal range values (Comolet [17|, for example, gives
C.0. = 87cm?/s, S.V. ~ 70cm?® and t, ~ 37%T for Ppa: = 140mmHg).

Figure 4(a) shows the pressure gradient wave in the rigid vessel with radius
a, as well as the flow rates for different Hartmann numbers. It could be noted
that for small H, the variation dynamics of the flow rate (and velocity) is a lot
slower than that of the pressure gradient, however for larger H, the flow rate



W indkessel circuit components
Ra 0.0334 mmHg.s/cm3
R, 1 mmHg.s/cm3
C 0.77 cm? /mmHg
Blood characteristics
7 41073 Pa.s
p 1050 kg/m>
o 0.5 S/m
Vessel radius
a | 0.3 | cm
Cardiac cycle parameters
freq 75 bpm
Praz 120 mmHg
tp 50%T s

Table 1. Numerical values
The resistance and capacitor values are chosen based on [15] and agreeing with [14], blood
characteristics are taken from [10] and the cardiac cycle parameters are chosen to match the

average typical values.

Pressure curves

=== aorta
o 100+ / ventricle
I ~
€ : =~
E 50 : T
0 }
0 ts tp T T+t T#s  Titp oT
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800 —
600
@2
@ 400
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200
0
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Figure 3. Ventricular pressure wave and aortic pressure and flow rate curves
Pressure and flow rate waves computed using the windkessel model over two cardiac cycles at 75
bpm. The ventricular pressure Pu(t) is set as in equation (9), the aortic pressure Pa(t) is

computed by (11), and the aortic flow rate (ventricle output) is Q(t) = w

curves tends to follow that of the pressure. The retardation of the movement
can also be clearly depicted, as the flow slows down when the magnetic field
intensity increases(fig.4(b)).

Note that by applying the Poiseuille standard formula for stationary flows
Qpois = %—‘?A—IZ’ , in a vessel of the same caliber under a pressure gradient equal
to the mean value of the computed pulsed gradient, we would get approximatly
77em3 /s. Which is the value we get by computing the mean value of the pulsed
flow rate for H, = 0.

Given that a Poiseuille profile yields a maximum velocity Upe, = o’ Ap

in Az
544em /s, figures 5(a) and 5(b) represent normalized velocity profiles as ratios
to this value for H, = 0 and H, = 2 respectively.
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(a) Pressure gradient and flow rate in a rigid
vessel: The pressure gradient is calculated by
(12), and the flow rate by (8) for different Hart-
mann numbers for a pulsed flow in a rigid ves-
sel which characteristic values are given in ta-
ble 1

mean flow rate

0.8
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o
@
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o
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(b) Mean flow rate as function of the Hart-

man number: The graduations on the left

represent a flow rate normalized as a ratio

to a Poiseuille flow rate, while the grad-

uations on the right represent a flow rate
in cm?®/s

Figure 4. Flow rate for various field intensities

Normalized velocity profile (Ha=0)
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Normalized velocity profile (Ha=2)
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Figure 5. Normalized velocity profiles

The velocity is computed from (7) and the normalization is done respectively to the Poiseuille

Unmaz =~ 544cm/s

5 Comparison with other flow types

In this section we discuss the obtained results by comparing them to other well
established cases of blood flows, whether stationary or pulsed, in the presence
of a magnetic field or not, with or without induced fields.
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5.1 Stationary flows

One of the advantages of our resolution method using the Fourier series is that
we can compare the results of our pulsed flow with a stationary one, simply
by limiting the calculations to the first harmonic k = 0. The pressure gradient

can then be expressed as —% = a_nz go , the velocity profile and flow rate would
be given by,
- 90 Io(Hq7 )>
=2 (1- : 14
w(®) =55 (1- 2 (14)
1 I(H,)
—9pg2 2o (2 _ _1\Uia) 1
w =20t 8 (G- i) (15)

where Iy and I; are modified Bessel functions, and g is the mean value of g(t):
go = %fOT g(t) dt, which expression can be calculated from (13) for wy = 0.

With no magnetic field (Poiseuille flow). The stationary well known
Poiseuille flow in a rigid vessel is given by wpeis(7) = —%%(1 —72).
By applying the same pressure gradient as described above, the velocity profile
can be expressed as,

pois (F) = L(1 = 7). (16)
If we expand (14) for small values of H,, while knowing that,

In(z) = >0, (Z;,z) ( [18] p. 375), we get that,

liril ’U,Q(f) = upois(f)
Figure 6(a) compares non dimensional flow rates (2ug/go) for various field
intensities to a Poiseuille flow (2upois/g0) in the absence of a magnetic field. It
clearly shows the influence of a magnetic field which is manifested by a flow
retardation and a flattening of the velocity profile, which is further accentuated
as H, increases.

In the presence of a magnetic field neglecting induced fields. For k=0 (4)
can be written,
Aug(7) — Hpuo(7) = —go

This is the same equation as established by Vardanyan [8] who studied the
case of a steady flow in a magnetic field while neglecting the induced fields,
and for which he derived the solution,

(-

U'ua'rd(f) = m
a
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This matches exactly with (14). Furthermore, if we compare it to the expression
in (7) for k=0, we deduce that we must have,

2 Jo(AnF) 1 1 Io(H,T)
2 - [1—
it e w (U hi)

which we in fact find if we numerically compute the sum.

In the presence of a magnetic field with induced fields. Gold [7] established
an exact solution for stationary blood flow in a magnetic field taking into
consideration induced current and magnetic field,

~ 9o —Hapcos6 S I’:I( 2a)
Ugota(T,0) = e 2 Zen i

2Ha n=0 In (Ta)

Ha

+ eTTCOSG i(—l)nE I';l (T)I “Zr ) cosnb (17)
") |
n=0 nA2
where,

_ J1pourn=20

6”_{2pourn>0 (18)

To compare this 6 dependent velocity profile to our axially symmetric case, we
take the mean velocity,

_ - L (%) n’ 2 [ H. 9 H,
oo =0 2 (V" ey 1y | (1 HF) |
n=0 2 D)
and compare it to
_ go (1 Il(Ha)
o8 (L 20
U= e (2 Holo(H,)) (20)

computed from (14) by averaging over the cross sectional area.
In accordance with what was demonstrated by Keltner et al. [1], we find that
neglecting induced fields leads to an overestimation of the retardation and
flattening effects, especially for high intensity fields (fig. 6(b)).

5.2 Periodic flows

Studies on periodic flows generally consider sine shaped pressure gradients. In
order to compare results found in the literature to ours it suffices to restrain
our pressure gradient to its first harmonic.
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Dimensionless steady velocity profile Dimensionless mean velocity vs Hartmann number

= Poiseuille Steady component
Ha=1 0.25¢ —e— Gold's solution 7]

- = - Ha=2

- = Ha=5

0 0.2 0.4 0.6 0.8 1 0 5 ;0 15 20
a

(a) Non dimensional velocity profiles computed (b) Comparison between the mean velocity
from (14) for various values of H, and compared computed from (20) and Gold’s exact solution
to the Poiseuille (16) flow (Bo=0) (19)

Figure 6. Comparison to other steady flows

In the absence of any magnetic field (Womersley flow). The sinusoidal flow
in a rigid conduct has been studied by many authors, but the most significant
results were established by Womersley [19]. For a pressure gradient such as,

_Lop(®)

PR =ap+aje™ . (21)

Womersley solved a velocity profile given by

2 2 Jo (337207 _
Uwom('f, t) _ apa (]_ _ 7’;2) + aja [1 _ 0 ('L Oé'r)‘| ezwt , (22)

dv iva? Jo (i%/2a)

where o = a\/g is the Witzig-Womersley number.

In our calculations, the pressure gradient corresponding to the first har-

monic along with the continuous component can be written as _1ldp

' p 0z
1 (go + gle“"t). In order to compare our results with those of Womersley, we
must set ag = a—”zgo and a; = a%gl-

Equation (22) can thus be written as,

uwom(fa t) =

o [ Jo (Z‘S/Qaf)l o
€ ’

E B JO (i3/2a)

and the flow rate would be given by,

_ g 9|1 L) |
Qwom(t) = 27a® (E +— [_ —) € . (24)

ia? |2 i3/2aJ, (32

Afterwards we compute the velocity and flow rate using (23) and (24) on one
hand, and (7) and (8) on the other for 0 < k < 1. We verify, in fact, that in the
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Dimensionless flow rate Dimensionless flow rate
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Time Time
(a) Non dimensional flow rates goiqaz with ¢ cal- (b) Plots of gliqaz where ¢ is calculated by
culated by (8) for various H, compared to the (8) and compared to Sud’s case where ¢ is
Womersley flow where ¢ is given by (24) given by (30) for various H,

Figure 7. Comparison with other sinusoidal flows

absence of any magnetic field (H, = 0) we get the same results as Womersley.
Figure 7(a) plots flow rates calculated for various H, as well as a flow rate
curve obtained by Womersley’s expression, with which a perfect match can be
depicted for H, = 0.

In the presence of a magnetic field neglecting induced fields. Sud et al. |9]

considered the case of a sinusoidal flow in a rigid conduct in the presence
of a external transverse magnetic field while neglecting the inductions. They
obtained non dimensional velocity profile such as,

A 1J]0( A iR ) ¢t (25)
i+ Jo (V=HZ = iR.) ’

Ugya (17, 17) =

by imposing a pressure gradient given by,

oz*

=A% (26)
with,

u A wa
zZ*=z/a, r*=rja, t"=wt, u=-—, p*—L7 A* = , Re=
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Winding up to the dimensional form we get,

n Jo ( —HZ2 92 r*)
Usud(r*at) - H2p 1- et ) (27)
P<W+—Jr) Jo( —H;—i%)
0 .
*a_z = Ae™t (28)
In order to compare those results with our calculations we set % = 501 in

(27) and k=1 in (7).
Using the Witzig-Womersley number o = a\/% we obtain the following veloc-
ity and flow rate expressions,

" Jo (JW r*)

usud(r*7 t) = 1- eiwt ) (29)

ia? + H2 Jo (m)
27Ta2g1 1 J1 (\/—Hg—i(ﬁ)

QSud(t) = 5 19 |5~ et (30)

i? +H; |2 THT a2 JO(\/W)

Note that for H, = 0 we get the same expressions as those of the Womersley’s
flow with no continuous component.

By calculating the velocities and flow rates using (29) and (30) we get matching
results with calculations by (7) and (8). Figure 7(b) plots different flow rate
curves computed using our expression as well as that of Sud for various H,,
the curves superimpose perfectly for the same field intensity.

In the presence of a magnetic field with induced fields. To the best of
our knowledge, up to this date, no study has considered the case of a periodic
blood flow in the presence of a magnetic field while taking into consideration
induced fields.

6 Discussion

6.1 On the use of the windkessel model

The pulsed pressure gradient used in this work is derived from a lumped
model. The major disadvantage of such models, is that they don’t take into
account the pressure wave propagation phenomenon. They behave as if the
propagation were immediate. This however is of no inconvenience in the case
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of this study since we are interested in rigid vessel flows, where in fact the
pressure propagation is very fast. If propagation were to be considered here it
should be incorporated in the large arteries, however in our case this would
have only introduced a certain delay and amplitude reduction in the rigid
vessel. Hence a windkessel model offers a simple enough configuration without
being very detrimental since we are not studying the entire system and not
trying to simulate waves with exact values for a given vessel.

The used windkessel model might be further expanded to include four
elements by adding an inductor to represent the blood inertia in the large
arteries. This will ensure a better fit of real pressure waves [20]. It could also
be enhanced by changing the output load and replacing R, with another
windkessel model, thus introducing inductors and capacitors for small arteries.
Nevertheless, it has been demonstrated that this would not greatly improve
the pressure and flow rate curves observed at the top of the circulatory tree [15].

6.2 On the choice of vessel model and flow conditions

In this study, a realistic pressure gradient is derived along a rigid vessel placed
at the output of a compliant module which receives the ventricle outflow. The
compliant module includes the resistance and compliance of the aorta and large
arteries. The vessel placed at the output of the elastic chamber had thus to
be of a small caliber (just small enough to be considered as rigid [13], and
big enough not to be too far down the circulatory tree). Since no bifurcations
are taken into account, the rigid vessel receives all the aortic flow, and this
leads to calculated flow rates (and velocities) that are much higher than the
real flow rates that occur generally in arteries of 0.3¢m radius (for example,
in the femoral artery which has a radius of 0.4e¢m, the blood velocity reaches
a maximum of 100cm/s [15] only, whereas in our calculations, we obtained
velocities reaching five times this physiological value). We could obtain rea-
sonable rates by inserting parallel branches in the periphery, thus forming a
tree of resistances where each resistance bifurcates in two, at each level of the
tree. Then the flow would be cut in half at each bifurcation point, so that at
the second level, for example, the flow would have already been reduced to
one fourth its original value. With this rough approximation of the peripheral
circulatory tree, all calculations would remain unchanged, then, depending on
the level at which the vessel of interest is found the resulting values would be
divided by 2tevel.

However, we should note that, during exposure to static magnetic fields it is
the large arteries flows that are mostly affected by the magnetic interactions.
In order to get an estimate of flows that might occur in a large vessel, we
could artificially place a lem radius vessel at the output of our compliant
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Figure 8. Pressure gradient and flow rate in a 1cm radius rigid vessel
The pressure gradient is calculated by (12), and the flow rate by (8) for different Hartmann

numbers

module, and perform calculations (shown in fig. 8) similar to those presented
in figure 4(a) (the curve corresponding to Ha = 5 is not shown in order to
be able to enlarge the ordinate scale). When comparing both figures, we can
see that the oscillations amplitudes are more dampened here. Note that the
non-dimensional graph corresponding to the data of fig.8 would be the same as
that of fig.4(b). Even though the considered vessel has the same caliber as the
aorta, the pressure gradient and flow values obtained here would not reflect
closely those observed in the aorta, since the aorta is not rigid but compliant
and it receives it’s flow directly from the ventricle and not through the modeled
windkessel chamber.

Furthermore, because of the growing field of small animal imaging using MRI,
it would also be interesting to assess to what extent MRI measurements can
alter the haemodynamics in mice. However, obtaining a real waveform of the
mouse blood flow rate would necessitate a rescaling of the model. Some esti-
mation of mean flow characteristics can be obtained from our result plots since
they represent non dimensional values versus the Hartmann number. Even if
the magnetic fields used for small animals imaging are a lot greater than those
used for humans, their effect would remain negligible since the mice vessels,
their cardiac output and their flow rate are a lot smaller than those of humans.
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For example, the flow in a human aorta (lem radius) subjected to a 1.57 mag-
net would yield a Hartmann number of 0.17, whereas (considering that mice
and human blood have the same viscosity and conductivity), the flow in the
mouse aorta (0.6mm radius according to [21]) in a 10T magnet would produce
Ha = 0.07, thus inducing a mean flow rate reduction smaller than 0.1%.

6.3 On sum convergence

In order to numerically evaluate the velocity and flow rate expressions which
contain infinite sums, it was necessary to define a limit in order to sum over
a finite number of terms. In other words, it was essential that we examine the
sum convergence to define a stop point after which the added terms would not
significantly modify the obtained sum.

Sum over k. Referring to equation (6) while knowing that,

Uk > J()()\n?z) 1
— =2 3 <
Ik ; And1(An) iwps + A2+ H?

L,

is uniformly limited and decreasing with k, it could be assumed that if after
a certain value K the harmonics g for |k| > K become negligible relatively
to the other harmonics, the uy for |k| > K will also be negligible relatively to
all other uy, for |k| < K. Therefore extending the sum to include all significant
gr ensures that all significant uy are included. A harmonic g is said to be
significant if it is necessary to the accurate reconstruction of g(t). It suffices
then to find K such as,

K
g t) = D g™ =~ g(t)
k=—K

Figure 9(a) compares the pressure gradient curve to various plots of a% gk for

different values of K. It can be clearly noted that beyond K = 7 the pressure
gradient is fitted quite well.

In order to evaluate the gradient’s fitting precision for a given K, we calculate
a normalized mean error defined as,

NME(K)%i (%)(iaz()snzg(m)z |
g 0z i

where —% is calculated by (12), M is the number of points of the regarded

(31)

time functions and the index ¢ represents the it" point of the function (at time
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Figure 9. Pressure gradient reconstruction from a%g(K)

t;).

The evolution, in respect to K, of the normalized mean error is shown in figure
9(b), where a rapid decline of the NME can be observed, until it stabilizes after
K =50.

To obtain the results presented in 4 we deemed acceptable to sum over —50 <
k < 50 only, with a NME(50) = 6.81 x 107°. Note that to reduce the error
to half its value we must extend the sum to K = 2000, thus summing with 40
times the number of terms.

Sum over n. Having set the k sum limits, we then focus on the n sum. The
number of terms N necessary for the convergence of the sum over n depends on
the value of H, and increases with it. This can be observed in figure 10 which
shows flow rate curves plotted for various values of N with three H, numbers.
It can be noted that for small H, the convergence is fast and is attained for
N =5, whereas for large H, it’s not until N = 50 that we no longer observe
any changes in the curve shapes. By calculating the NME between two curves
for different values of NV,

M
1
NMEWLM%zME : (32)
i=1

(gvn)); = (ave),
(anve)),

we find that for H, = 20, for example, going from N = 50 to N = 1000 only
improves the result by 4 x 107° i.e. EMN(50,1000) = 4 x 1075, hence we
deemed sufficient to set N = 50.

The influence of NV can also be noted by comparison to Womersley and Sud’s
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Figure 11. Normalized mean errors to other sinusoidal flows

sinusoidal flows. In fact the mean error rate between the curve (H, = 0) and
that of Womersley depends on the number of terms in the sum over n, and it
decreases as that number increases (fig.11(a)). For example, for N =5 we get
NME ~7x107% and NME ~ 4.5 x 107° for N = 50. The same also applies
for Sud’s flow. Figure 11(b) shows the mean flow rates errors for various H,.
When H, increases, a larger IV is needed to ensure convergence. With N = 50
we get an error of 9 x 107° for H, = 30 (the same error is obtained for N < 15
when H, = 1) while for H, < 10 the error remains < 2.7 x 1075,

6.4 On induced magnetic fields

The flow reduction depicted in our results does not accurately reflect the real
movement retardation upon exposure to magnetic fields, especially very high
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ones. In fact, neglecting the induced fields produces an overestimation of the
retardation and flattening effects. However it is noteworthy to mention that
in real life situations like magnetic resonance imaging the involved Hartmann
values are very small (<< 2) making this approximation quite acceptable, un-
less of course we are interested in computing induced voltages. For example,
in the extreme case of a 15 Tesla magnet (i.e. H,=0.5 for a = 0.3cm) the
overestimation of the mean velocity reduction amounts to 3.5% only. Never-
theless, when dealing with larger vessels such as the aorta, one must be carful
using this aproximation. For instance, neglecting the inductions in a 107" field
leads to a 10% overestimation, wherease considering a 157" magnet intensity
produces an additional 27% flow reduction compared to the exact solution.

6.5 On magnetohydrodynamic blood flow in elastic vessels

Studying magnetohydrodynamic blood flow in elastic vessels would be very
interesting, especially since it would allow a close modeling of the ECG con-
taminating voltages, which are mainly generated in the aorta. Nevertheless,
introducing wall motion in the model would impede attaining an analytical so-
lution while using a physiological pressure gradient. Sud et al. [22] had proposed
a flow rate expression for a simple sinusoidal pressure gradient in an elastic
tube while neglecting the induced fields. A novel approach is currently in de-
velopment [23], where the magnetic forces are incorporated in one-dimensional
model equations. A numerical resolution of the established equations would
produce flow results using a realistic pulsed pressure gradient while taking into
account the induced electromagnetic fields.

7 Conclusion

In this work we studied the magnetohydrodynamic flow of blood in a rigid
vessel in the presence of a static magnetic field. Even though some simplifying
hypothesis were made, the originality of this work consists in applying a real
physiological pressure gradient model. The gradient expression was obtained
from a lumped model where a windkessel compliant module ensured the tran-
sition between ventricular flow and the rigid vessel input. The Fourier series
based solution made it possible to evaluate our results using previous well es-
tablished solutions for both steady or sinusoidal blood flows. As expected, a
comparison with flows in the absence of any magnetic field showed the effects
of a magnetic field in terms of flow reduction and velocity profile flattening.
Moreover, a perfect match was attained when comparing to solutions derived
in the presence of a magnetic field when inductions were neglected, while a
comparison with the exact solution proved that the induced fields lessen the
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flow reduction. These calculations can be further improved by enhancing the
lumped model and extending the magnetohydrodynamic equations to include
induced fields.
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