Stability results for logarithmic Sobolev and Gagliardo-Nirenberg inequalities - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2014

Stability results for logarithmic Sobolev and Gagliardo-Nirenberg inequalities

Résumé

This paper is devoted to improvements of functional inequalities based on scalings and written in terms of relative entropies. When scales are taken into account and second moments fixed accordingly, deficit functionals provide explicit stability measurements, i.e., bound with explicit constants distances to the manifold of optimal functions. Various results are obtained for the Gaussian logarithmic Sobolev inequality and its Euclidean counterpart, for the Gaussian generalized Poincaré inequalities and for the Gagliardo-Nirenberg inequalities. As a consequence, faster convergence rates in diffusion equations (fast diffusion, Ornstein-Uhlenbeck and porous medium equations) are obtained.
Fichier principal
Vignette du fichier
Dolbeault-Toscani.pdf (311.58 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01081098 , version 1 (06-11-2014)
hal-01081098 , version 2 (17-04-2015)

Identifiants

Citer

Jean Dolbeault, Giuseppe Toscani. Stability results for logarithmic Sobolev and Gagliardo-Nirenberg inequalities. 2014. ⟨hal-01081098v1⟩
361 Consultations
254 Téléchargements

Altmetric

Partager

More