Strong edge-coloring of $(3, \Delta)$-bipartite graphs - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2014

Strong edge-coloring of $(3, \Delta)$-bipartite graphs

Résumé

A strong edge-coloring of a graph $G$ is an assignment of colors to edges such that every color class induces a matching. We here focus on bipartite graphs whose one part is of maximum degree at most $3$ and the other part is of maximum degree $\Delta$. For every such graph, we prove that a strong $4\Delta$-edge-coloring can always be obtained. Together with a result of Steger and Yu, this result confirms a conjecture of Faudree, Gyárfás, Schelp and Tuza for this class of graphs.
Fichier principal
Vignette du fichier
paper.pdf (179.4 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01080279 , version 1 (04-11-2014)
hal-01080279 , version 2 (18-08-2015)

Identifiants

Citer

Julien Bensmail, Aurélie Lagoutte, Petru Valicov. Strong edge-coloring of $(3, \Delta)$-bipartite graphs. 2014. ⟨hal-01080279v1⟩
531 Consultations
987 Téléchargements

Altmetric

Partager

More