A Unified Topological-Physical Model for Adaptive Refinement - Archive ouverte HAL Access content directly
Conference Papers Year : 2014

A Unified Topological-Physical Model for Adaptive Refinement

Abstract

In Computer Graphics, physically-based simulation of deformable objects is a current challenge, and many effi-cient models have been developed to reach real-time performance. However, these models are often limited when complex interactions involving topological modifications are required. To overcome this, the key issue is to manage concurrently, and at minimal cost, both the topology and physical properties. Thus, this paper presents a unified topological-physical model for soft body simulation. The complete embedding of physical and topological models will facilitate operations like piercing, fracture or cutting, as well as adap-tive refinement. Indeed, the difficulty is to treat topological changes during the simulation, requiring combined geometric and physics considerations. Rigorous topological operations guarantee the validity of the mesh, while direct access to the adjacent and incident relations will ease the update of physical properties of new elements created during these operations. These features are illustrated on an embedded mass-spring system undergoing topological modifications per-formed during simulation. Different levels of subdivision are also presented.
Fichier principal
Vignette du fichier
flechon_zara_damiand_jaillet_vriphys2014.pdf (8.94 Mo) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

hal-01077994 , version 1 (27-10-2014)

Identifiers

Cite

Elsa Fléchon, Florence Zara, Guillaume Damiand, Fabrice Jaillet. A Unified Topological-Physical Model for Adaptive Refinement. Workshop on Virtual Reality Interaction and Physical Simulation, Sep 2014, Bremen, Germany. pp.39-48, ⟨10.2312/vriphys.20141222⟩. ⟨hal-01077994⟩
315 View
314 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More