Data Mining by NonNegative Tensor Approximation - Archive ouverte HAL Access content directly
Conference Papers Year : 2014

Data Mining by NonNegative Tensor Approximation


Inferring multilinear dependences within multi-way data can be performed by tensor decompositions. Because of the presence of noise or modeling errors, the problem actually requires an approximation of lower rank. We concentrate on the case of real 3-way data arrays with nonnegative values, and propose an unconstrained algorithm resorting to an hyperspherical parameterization implemented in a novel way, and to a global line search. To illustrate the contribution, we report computer experiments allowing to detect and identify toxic molecules in a solvent with the help of fluorescent spectroscopy measurements.
Fichier principal
Vignette du fichier
CabrC14-MLSP.pdf (496.18 Ko) Télécharger le fichier
Origin : Files produced by the author(s)
Comment : Les fichiers déposés sont bien ceux produits par les auteurs selon le style demandé par l'éditeur, et pas le fichier de l'éditeur. Le copyright et l'en-tete peuvent etre retirés si cela est imposé par HAL.

Dates and versions

hal-01077801 , version 1 (27-10-2014)


  • HAL Id : hal-01077801 , version 1


Rodrigo Cabral Farias, Pierre Comon, Roland Redon. Data Mining by NonNegative Tensor Approximation. MLSP 2014 - IEEE 24th International Workshop on Machine Learning for Signal Processing, Sep 2014, Reims, France. ⟨hal-01077801⟩
526 View
174 Download


Gmail Facebook Twitter LinkedIn More