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ABSTRACT

Inferring multilinear dependences within multi-way data can

be performed by tensor decompositions. Because of the pres-

ence of noise or modeling errors, the problem actually re-

quires an approximation of lower rank. We concentrate on

the case of real 3-way data arrays with nonnegative values,

and propose an unconstrained algorithm resorting to an hy-

perspherical parameterization implemented in a novel way,

and to a global line search. To illustrate the contribution, we

report computer experiments allowing to detect and identify

toxic molecules in a solvent with the help of fluorescent spec-

troscopy measurements.

Index Terms— muti-way ; tensor ; CP ; low-rank ; ap-

proximation ; nonnegative ; line search ; fluorescence ; HAP

1. INTRODUCTION

Tensor decompositions are emerging as an alternative tool for

machine learning and data mining. They permit to (but are

also limited to) find multilinear dependences between hidden

variables. For instance, they have been already used in the

field of blind source separation, but less used as a determinis-

tic tool for mining data.

In the present framework, we shall concentrate on real

nonnegative data, which are organized in the form of a multi-

way array. Several applications have already been identified,

which fit in this framework, including machine learning [1],

internet connection analysis [2, 3], hyperspectral imaging [4],

spectrography [5], as well as a few others [6, 7]. Our de-

scription will focus on 3-way fluorescence spectrography, but

could of course apply to arrays of higher order and to other

application fields where nonnegativity is important.

Notation Vectors will be distinguished from scalar num-

bers by bold lowercases, e.g. v; matrix and tensor arrays will

be denoted by bold and calligraphic uppercases, respectively,

e.g. A and T . Array entries are real scalar numbers, and are

denoted by plain letters, e.g. vi, Ajk, T`mn, for the previ-

ous vector, matrix or tensor examples. Vectors will be repre-
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sented by column arrays of coordinates. A ! B will denote

the element-wise (Hadamard) product between two matrices

of same dimensions, ⌦ will denote the outer product between

arrays, e.g. v⌦A⌦T is the object whose coordinates are

vi Ajk T`mn. These are the notations assumed in e.g. [8].

2. TENSOR APPROXIMATION

2.1. Tensor decomposition

The objective is to decompose a 3-way data array Y in a fi-

nite sum of outer products of vectors (also known as tensor

products). For example, if we consider an array of real val-

ues of size I ⇥ J ⇥ K, then we want to find the vectors

ar = [A1r, · · · AIr]
>

2 R
I , br = [B1r, · · · BJr]

>
2 R

J

and cr = [C1r, · · · CKr]
>

2 R
K with r 2 {1, · · · , R} for

which

Yijk =

R
X

r=1

Air Bjr Ckr, (1)

or equivalently using the outer product

Y =
R
X

r=1

ar ⌦br ⌦ cr. (2)

If R is the smallest number of components necessary to ex-

actly decompose Y , then (2) is called the canonical polyadic

(CP) decomposition of Y; see [5, 6, 8] and references therein.

Most of the time, Y cannot be exactly decomposed as in

(2) for the desired R, either because the actual model behind

Y is not multilinear (linear in ar, br and cr individually), or

because the data are noisy. In this case, for a given R, the

goal is to find {ar, br, cr, 1  r  R} that best approxi-

mate the original array, for example, by solving the following

minimization problem

minimize Υ =

∥

∥

∥

∥

Y −
R
P

r=1
ar ⌦br ⌦ cr

∥

∥

∥

∥

2

2
w.r.t. A = [a1, · · · aR] 2 R

I⇥R,
B = [b1, · · · bR] 2 R

J⇥R,
C = [c1, · · · cR] 2 R

K⇥R,

(P.1)
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where k · k2 is the Frobenius norm: kT k2 =
q

P

i,j,k T
2
ijk.

Matrices A, B, and C are commonly called loading matrices

[5].

Several approaches may be found in the literature, which

search for a solution of problem (P.1). They range from

simple alternating algorithms like the well-known alternating

least squares (ALS) [5] to all-at-once minimization proce-

dures like gradient descent, conjugate gradient and quasi-

Newton algorithms [9, 10, 4, 11]. Interestingly, a solution

for problem (P.1) does not necessarily exist [12], and, as a

consequence, searching for it is an ill-posed problem.

2.2. Nonnegative CP and quadratic parameterization

A particular case for which problem (P.1) is well-posed is

when the vectors in A, B and C are nonnegative. In this

case, it can be shown that a solution exists [13]. Not only this

instance of the problem is well-posed, but it also naturally ap-

pears in many applications such as fluorescence spectrometry,

as pointed out in Section 1. For these reasons, in what follows,

we focus on the nonnegative version of problem (P.1), which

may be stated as follows, for a given nonnegative tensor Y :

minimize Υ =

∥

∥

∥

∥

Y −
R
P

r=1
ar ⌦br ⌦ cr

∥

∥

∥

∥

2

2
w.r.t. A, B and C,

subject to A ⌫ 0, B ⌫ 0 and C ⌫ 0,

(P.2)

where F ⌫ 0 means that all elements of F are nonnegative.

Common methods solving (P.2) include ALS with active

sets [14, p. 170], minimization methods with logarithmic

penalty functions [9] and extensions of algorithms used for

nonnegative matrix factorization [15], [16] such as ALS, reg-

ularized ALS with projection, projected gradient, accelerated

proximal gradient, gradient with nonnegative multiplicative

update and projected quasi-Newton techniques.

Instead of solving the minimization problem (P.2), an in-

teresting approach studied in [11] consists in reparameter-

izing the problem with the loading matrices A0 2 R
I⇥R,

B0 2 R
J⇥R and C0 2 R

K⇥R such that

A = A0
!A0 =

2

6

4

a21,1 · · · a21,R
...

...

a2I,1 a2I,R

3

7

5
,

B = B0
!B0 and C = C0

!C0.

(3)

Note that with this reparameterization the original minimiza-

tion problem becomes unconstrained:

minimize

∥

∥

∥

∥

Y −
R
P

r=1
(a0r ! a0r)⌦ (b0

r ! b0
r)⌦ (c0r ! c0r)

∥

∥

∥

∥

2

2
w.r.t. A0, B0 and C0,

(P.3)

since the components of the approximation are now non-

negative by construction. As a consequence, this approach

does not require the introduction of projection techniques; for

example, in [11] a conjugate gradient technique for uncon-

strained problems is used to solve problem (P.3).

2.3. Unit norm constraint and spherical parameteriza-

tion

The nonnegativity constraint imposed above allows to guaran-

tee the existence of a solution, but an issue that still persists is

the lack of uniqueness of the parameterization. Non unique-

ness of the solution comes from multiple ambiguities inherent

in the multilinear model (P.1), which persist in (P.3).

The first ambiguity put forward in the literature is that

of permutation, since the order in which the R terms are

summed has no influence on the result. Actually, this issue

is irrelevant in parameter estimation, even if it is important

when assessing performance in computer experiments. On

the other hand, there remains a scaling ambiguity, induced

by the multiplicative aspect within components. In fact, the

tensor a⌦b⌦ c can be equally represented by the triplets

of vectors (a,b, c) or (λ1a, λ2b, c/λ1λ2), for any nonzero

numbers {λ1, λ2}; this indeterminacy is inherent in the defi-

nition of tensor spaces [8]. Contrary to permutation, scaling

can have an effect on optimization algorithms used to solve

(P.2). In particular, it can make iterations continuously move

between various scaling-equivalent solutions. In practice, it

is useful to fix these ambiguities.

To solve this issue, we can impose that all the columns of

A and B have a unit L1 norm, as these matrices are already

restricted to have nonnegative elements:

kark1 = 1 and kbrk1 = 1, for r = {1, · · · , R} .
(4)

On the other hand, matrix C is left unconstrained.

These L1-norm constraints impose the following L2-

norm constraints in the nonnegative reparameterization (P.3):

ka0rk
2
2 = 1 and kb0

rk
2
2 = 1, for r = {1, · · · , R} .

(5)

As a consequence, each column vector of A0 and B0 is con-

strained to lie on the unit L2-hypersphere. This can also be

imposed by a parameterization, which consists of describing

them using polar coordinates, namely by angles. For exam-

ple, any vector a0 with I components can be parameterized

with angles θ = [✓1 · · · , ✓I−1]
>

as

"

cos ✓1, cos ✓2 sin ✓1, . . . , cos ✓I−1

I−2
Y

i=1

sin ✓i,

I−1
Y

i=1

sin ✓i

#>

But since these angles can be restricted to belong to the in-
terval [0, ⇡/2], one can instead use their tangent ti 2 [0, 1[,
since there exists a bijection relating them: cos2 ✓i = (1 +
t2i )

−1 and sin2 ✓i = t2i (1 + t2i )
−1. Finally, a generic vector

a = a0 ! a0 with nonnegative entries and unit L1-norm can



be written as

"

1

1 + t2
1

,
1

1 + t2
2

t21

1 + t2
1

, . . .
1

1 + t2I−1

I−2
Y

i=1

t2i

1 + t2i
,

I−1
Y

i=1

t2i

1 + t2i

#>

,

But it turns out that there is an even simpler and obvious way

to do this, which will present significant advantages. In fact

consider the simpler parameterization

1

1 +
PI

i=2 ⌧
2

⇥

1, ⌧22 , ⌧
2
3 , . . . , ⌧

2
I

⇤

, ⌧i 2 [0, 1[.

This parameterization also allows to represent any nonnega-

tive vector on the unit L1-hypersphere. There is a relationship

between {ti} and {⌧i}, but it is irrelevant in our discussion.

Clearly, there are I possible such parameterizations of the I-

dimensional hypersphere, depending on the place where the

value 1 is imposed. We assumed the value 1 was set in the first

entry, but the reasoning is the same with a different location.

The inconvenience of this solution, which is also shared

by tangents ti, is that all ⌧i’s need to tend to infinity in order

to approach zero in the first coordinate. The consequence is

that zero cannot be exactly obtained, and that this parameteri-

zation is valid only generically. For this reason, we shall now

consider projective coordinates:

1
PI

i=1 ⌧
2
i

⇥

⌧21 , ⌧
2
2 , . . . , ⌧

2
I

⇤

. (6)

Clearly, we have now too many parameters, and the pa-

rameter vector (⌧1, . . . ⌧I) corresponds to the same point as

λ(⌧1, . . . ⌧I) for any nonzero nonnegative λ. This is precisely

what allows not only to reach all possible values, but also to

better condition the parameterization because we may now

impose |⌧i| 2 [0, 1]. In practice, setting λ = |⌧max|
−1

, the

inverse of the largest |⌧i|, will yield the best conditioning. In

the remainder, we refer to this parameterization technique as

Parameterization of Positive Orthant Hyperspheres (PAPOH).

Then problem (P.3) reduces to:

minimize Υ
def
=

∥

∥

∥

∥

Y −
R
P

r=1
Dr

∥

∥

∥

∥

2

2

,

w.r.t. α, β andγ,

(P.4)

where Dr denote decomposable (rank-1) tensors

Dr
def
= ar(αr)⌦br(βr)⌦ cr(γr),

where ar(αr) and br(βr) are parameterized as in (6); vector

(↵1r, . . . ↵Ir)
> is denoted by αr,

ar(αr) =
1

P

i ↵
2
ir

⇥

↵2
1r, . . . ↵

2
Ir

⇤>
, max

i
↵2
ir = 1, (7)

α is the set of R vectors αr, and a similar notation is used

for βr, β, γr and γ. Here the entries of cr(γr) are simply

Ckr = γ2
kr, where for notation homogeneity γkr is an Ersatz

of C 0
kr.

2.4. Fundamental difference with projection

The algorithm proposed in this contribution will choose at ev-

ery iteration the most appropriate parameterization by setting

to 1 the absolute value of one parameter in every vector αr

and βr, 1  r  R, as depicted in (7). Every unit-norm

vector with nonnegative entries may hence have a 1 in the

numerator at a different location, and this may vary with iter-

ations.

There is a fundamental difference between this parame-

terization (PAPOH) and projection. In fact, the iterations we

produce are by construction all on the hypersphere, and the

most well conditioned parameterization is chosen at very it-

eration. On the other hand in projected iterative algorithms,

iterations are generated outside the hypersphere and are pro-

jected onto it at every iteration.

3. ALGORITHM

3.1. Parameter update

To solve (P.4), we use a conjugate gradient algorithm. Let

xt
def
=

2

4

α̂

β̂

γ̂

3

5

t

and gt
def
=

2

4

rΥα

rΥβ

rΥγ

3

5

t

.

For this algorithm the estimates α̂, β̂ and γ̂ are updated at

iteration t using the Pollak-Ribière update formula:

xt+1 = xt − µtdt,

⌫t = (gt+1 − gt)
>gt+1/||gt||

2
2,

dt+1 = Mt gt+1 − ⌫tdt,

where µt is a variable step size, dt is the descent direction,

which is initialized to d1 = g1, and Mt is a preconditioning

matrix, usually diagonal, which we have set to identity in the

present paper.

3.2. Gradient expressions

At each iteration t, one index i(r, t) (resp. j(r, t)) in every

vector αr (resp. βr) is chosen, so that ↵2
i(r,t),r = 1 (resp.

β2
j(r,t),r = 1). The gradient w.r.t. ↵i(r,t),r does not exist at

iteration t, and in practice it may be set to zero since ↵2
i(r,t),r

remains equal to 1. We eventually have the following deriva-

tives:

for i 6= i(r, t)
@Air

@↵ir

= 2
↵iruir

(
P

q ↵
2
qr)

2
, (8)

for i 62 {i(r, t), p}
@Apr

@↵ir

= −2
↵ir↵

2
pr

(
P

q ↵
2
qr)

2
, (9)

with uir
def
=

P

q 6=i ↵
2
qr,

and for p = i(r, t)
@Apr

@↵ir

= −2
↵ir

(
P

q ↵
2
qr)

2
. (10)



Following the notation assumed for αr in (7), βjr and γkr
will denote the jth and kth entries of vectors βr and γr, re-

spectively. Now define Eijk = Yijk−
P

r AirBjrCkr, so that

Υ = ||E ||2. Then, 8p, i, 1  p  I , i 2 {1, . . . I}−{i(r, t)}:

@Υ

@↵ir

= −2
X

pjk

Epjk

@Apr

@↵ir

BjrCkr. (11)

Similar expressions hold for β, by exchanging the roles of A

and B, with br = βr ! βr/||βr||
2
2 as in (7). For the third

loading matrix, there is no normalization, and cr = γr ! γr

so that
@Υ

@γkr
= −4

X

ij

Eijk AirBjrγkr. (12)

3.3. Exact Line Search (ELS) by polynomial fitting

Since the objective function Υ defined in (P.4) is a rational

function in the unknown parameters, for any fixed direction

g = [g↵,gβ ,gγ ]
>, defined e.g. by the gradient, the station-

ary points of Υ with respect to µt are the roots of a polynomial

⇡(µ) in µt. This is a great advantage of the parameterization

we have assumed: the value of the step size µt yielding the

globally minimal value of the objective along the search di-

rection can be found. More precisely, we proceed in three

steps:

1. Computation of the coefficients of the rational func-

tion. From (1) and (6), it can be seen that the objective

takes the form

Υ(α+ µg↵,β + µgβ ,γ + µgγ) =

X

ijk

"

Yijk −

R
X

r=1

`2A,ir(µ)

qA,r(µ)

`2B,jr(µ)

qB,r(µ)
`2C,kr(µ)

#2

,

where `A,ir, `B,jr and `C,kr are linear forms, and qA,r

and qB,r are quadratic forms in µ.

2. Finding the roots of the first derivative:

@Υ

@µ
= 0 , ⇡(µ) = 0, (13)

where the exact expression of ⇡ can be obtained from

those of the above linear and quadratic forms.

3. Finding the root corresponding to the global minimum:

just select the best root by evaluating Υ at those values.

However, to spare some computational load, this optimal

step size does not need to be computed at every iteration, but

can be executed only cyclically, for instance at every IJKR
iterations, or just before termination, with the hope that it

could help escape from local minima in case the algorithm

is stuck.

3.4. Complexity

Following the usual practice, the computational complexity

is assimilated to the number of multiplications, being under-

stood that a floating point operation (flop) is implemented as

a multiplication followed by an addition, and that the number

of multiplications is generally of same order as the number of

additions [17].

Update rule. The update of A, B and C is dominated by

the gradient computation, whereas the complexity involved

by (8-9) is negligible. In fact, the computation of the gradi-

ent requires the contraction of tensor Eijk over two or three

indices as shown in (11) and (12). More precisely, the update

(8) requires an order of O(IJKR(I + J + 1)) multiplies.

Line Search. Next, the computation of the globally op-

timal step size (ELS) is dominated by the calculation of the

coefficients of polynomial ⇡(µ); the computation of its roots

is comparatively negligible. More precisely, dropping indices

for an easier writing, polynomial ⇡ takes the expression:

⇡(µ) =

R
X

r=1

2

4

Y

n 6=r

q2Anq
2
Bn

3

5 (2Fr −Gr) with

Fr = qArqBr

X

ijk

Eijk[`A`
0

A`
2

B`
2

C + `
2

A`B`
0

B`
2

C + `
2

A`
2

B`C`
0

C ]

Gr = (q0ArqBr + qArq
0

Br)
X

ijk

Eijk`
2

A`
2

B`
2

C .

If we assume that the Fourier transform is not used to compute

the product of two polynomials of degree m and n, with say

0 < m  n, then the complexity of the product is (n −
m)(m+1)+(m+1)(m+2)/2 flops. On this basis, one can

then show that computing all the coefficients of ⇡(µ) requires

a computational complexity which increases as O(IJKR).

3.5. Initialization and stopping

The initial value is drawn randomly and belongs to the feasi-

ble set; that is, every parameter vector ar or br is nonnegative

belongs to the unit L1 hypersphere.

One defines a maximal number of iterations, tmax, and a

minimal relative variation of the objective, ". The iterations

are stopped if one of the two conditions below are satisfied:

1. Maximal number of iterations reached: t ≥ tmax

2. The relative variations of the objective function have

become negligible: |Υt+1 −Υt|Υ
−1
t+1 < ".

4. COMPUTER EXPERIMENTS

In what follows we test five different algorithms used to find

tensor approximations: alternating least squares (ALS) with-

out nonnegativity constraints1, alternating least squares with

1A projection is carried out only at the last iteration after normalizing the

factors A and B.



projection on the nonnegative orthant (NALS), gradient with

nonnegative multiplicative update (NMU), conjugate gradient

using the parameterization with squares (CGP), and conju-

gate gradient with PAPOH (PAPOH CG). The true nonnega-

tive CP model has random elements such that A and B have

unit L1 norm. The model dimensions are I = 20, J = 20,

K = 15 and R = 8 and it is measured with independent

identically distributed (i.i.d.) Gaussian noise with standard

deviation σ = 5⇥ 10−4. Algorithm initialization is also ran-

dom but equal for all algorithms. In the simulations, we used

the NMU algorithm from the MATLAB Tensor Toolbox [18].

Simulation results for two different realizations are shown in

Fig.1, where the reconstruction error is plotted (in dB) as a

function of the number of iterations. Note that if we com-

pare the performance of the gradient-based algorithms, NMU

is the slowest and PAPOH CG is the fastest. Notice that the

alternating algorithms can be either fast or slow depending on

the initial conditions. In the second realization we can see

that NALS is blocked in a point far from the optimum.

The data used for the second test are generated by arti-

ficially mixing fluorescence excitation-emission spectra rep-

resentative of 4 different polycyclic aromatic hydrocarbons

(PAH): naphthalene, phenanthrene, pyrene, benzanthracene.

The mixing matrices (10 in the present case) are generated

randomly with nonnegative values. The algorithms are tested

supposing R = 5 to simulate a misdetection of the number of

solutes. The original and reconstructed spectra are shown in

Fig.2 after 5000 iterations, and plotted as a function of wave-

lengths, as usual in the field of chemometrics. The results for

the standard ALS algorithm are shown by normalizing and

projecting the final result on the nonnegative orthant (but its

iterations are unconstrained). Results for the NMU algorithm

are not shown due to space limitation.

One can observe that the ALS algorithms generate a spu-

rious component that does not exist. On the other hand, the

CGP of [11] and PAPOH CG make a good job. If we look at

the sums of the squared errors on the parameters (and not on

the tensor reconstruction) we can clearly see the differences.

They are the following: ALS - 2.00 ⇥ 10−3, NALS - 2.36 ⇥
10−4, CGP - 2.82 ⇥ 10−5 and PAPOH CG - 3.12 ⇥ 10−9.

In practice, the gradient-based algorithms can be made even

more robust to a misdetection of the number of solutes by

adding an approximation of the mixed pseudo norm L1,0 as

a penalty term (this will be reported in another paper). This

can hardly be done in the ALS approach.

5. CONCLUSIONS

The L1 norm has been chosen since it is the natural norm for

vectors with nonnegative entries. This led to a simple param-

eterization of the intersection of the unit L1-hypersphere and

the nonnegative cone, which is symmetric and expressed as a

rational function. Among useful by-products, we have sim-

pler gradient expressions, a conditioning easy to monitor, and

a step size that can be globally optimized. The efficiency of

−30

−20

−10

0

1
0
lo
g
1
0
(Υ

) PAPOH CG CGP

NMU NALS

ALS

0 200 400 600
−30

−20

−10

0

1
0
lo
g
1
0
(Υ

)

Fig. 1. Cost function Υ (dB) versus iterations. The true CP

model is generated randomly such that all of its elements are

nonnegative and the columns of the factors A and B have

unit L1 norm. The results obtained with two realizations are

shown. The CP model is of dimension 20 ⇥ 20 ⇥ 15, with

rank R = 8. The model is measured with i.i.d. Gaussian

noise with standard deviation σ = 5⇥ 10−4.

this algorithm is illustrated by a problem of fluorescence spec-

troscopy, which is important in environmental sciences. The

CP decomposition of the nonnegative data tensor into rank-

one terms permits to identify pure solutes, such as toxic poly-

cyclic aromatic hydrocarbons highly diluted in water. In par-

ticular, the proposed algorithm better detects the number of

fluorescent solutes, and hence better identifies them via their

spectrum.
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