A preconditioned Forward-Backward approach with application to large-scale nonconvex spectral unmixing problems - Archive ouverte HAL
Communication Dans Un Congrès ICASSP 2014 : IEEE International Conferences on Acoustics, Speech and Signal Processing Année : 2014

A preconditioned Forward-Backward approach with application to large-scale nonconvex spectral unmixing problems

Résumé

Many inverse problems require to minimize a criterion being the sum of a non necessarily smooth function and a Lipschitz differentiable function. Such an optimization problem can be solved with the Forward-Backward algorithm which can be accelerated thanks to the use of variable metrics derived from the Majorize-Minimize principle. The convergence of this approach is guaranteed provided that the criterion satisfies some additional technical conditions. Combining this method with an alternating minimization strategy will be shown to allow us to address a broad class of optimization problems involving large-size signals. An application example to a nonconvex spectral unmixing problem will be presented.
Fichier principal
Vignette du fichier
icassp2014.pdf (148.68 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01077329 , version 1 (24-10-2014)

Identifiants

Citer

Audrey Repetti, Emilie Chouzenoux, Jean-Christophe Pesquet. A preconditioned Forward-Backward approach with application to large-scale nonconvex spectral unmixing problems. 39th IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2014)., May 2014, Florence, Italy. pp.1498 - 1502, ⟨10.1109/ICASSP.2014.6853847⟩. ⟨hal-01077329⟩
181 Consultations
275 Téléchargements

Altmetric

Partager

More