On the proper orientation number of bipartite graphs - Archive ouverte HAL Access content directly
Conference Papers Year : 2014

On the proper orientation number of bipartite graphs

Abstract

An orientation of a graph G is a digraph D obtained from G by replacing each edge by exactly one of the two possible arcs with the same endvertices. We then prove that deciding whether − → χ (G) ≤ ∆(G) − 1 is an NP-complete problem. We also show that it is NP-complete to decide whether − → χ (G) ≤ 2, for planar subcubic graphs G. Moreover, we prove that it is NP-complete to decide whether − → χ (G) ≤ 3, for planar bipartite graphs G with maximum degree 5.
Fichier principal
Vignette du fichier
proper-orientation-EA-ICGT.pdf (273.41 Ko) Télécharger le fichier
Origin Files produced by the author(s)
Loading...

Dates and versions

hal-01076904 , version 1 (23-10-2014)

Identifiers

  • HAL Id : hal-01076904 , version 1

Cite

Julio Araujo, Nathann Cohen, Susanna de Rezende, Frédéric Havet, Phablo Moura. On the proper orientation number of bipartite graphs. 9th International colloquium on graph theory and combinatorics, Jun 2014, Grenoble, France. ⟨hal-01076904⟩
515 View
393 Download

Share

Gmail Mastodon Facebook X LinkedIn More