Estimation of the blood Doppler frequency shift by a time-varying parametric approach
Résumé
Doppler ultrasound is widely used in medical applications to extract the blood Doppler flow velocity in the arteries via spectral analysis. The spectral analysis of non-stationary signals and particularly Doppler signals requires adequate tools that should present both good time and frequency resolutions. It is well-known that the most commonly used time-windowed Fourier transform, which provides a time-frequency representation, is limited by the intrinsic trade-off between time and frequency resolutions. Parametric methods have then been introduced as an alternative to overcome this resolution problem. However, the performances of those methods deteriorate when high non-stationarities are present in the Doppler signal. For the purpose of accurately estimating the Doppler frequency shift, even when the temporal flow velocity is rapid (high non-stationarity), we propose to combine the use of the time-varying auto-regressive method and the (dominant) pole frequency. This proposed method performs well in the context where non-stationarities are very high. A comparative evaluation has been made between classical (FFT based) and auto-regressive (both block and recursive) algorithms. Among recursive algorithms we test an adaptive recursive method as well as a time-varying recursive method. Finally, the superiority of the time-varying parametric approach in terms of frequencies tracking and of delay on the frequency estimate is illustrated on both simulated and in vivo Doppler signals.
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...