Stochastic description of geometric phase for polarized waves in random media - Archive ouverte HAL
Article Dans Une Revue Journal of Physics A: Mathematical and Theoretical Année : 2013

Stochastic description of geometric phase for polarized waves in random media

Résumé

We present a stochastic description of multiple scattering of polarized waves in the regime of forward scattering. In this regime, if the source is polarized, polarization survives along a few transport mean free paths, making it possible to measure an outgoing polarization distribution. We solve the direct problem using compound Poisson processes on the rotation group SO(3) and non-commutative harmonic analysis. The obtained solution generalizes previous works in multiple scattering theory and is used to design an algorithm solving the inverse problem of estimating the scattering properties of the medium from the observations. This technique applies to thin disordered layers, spatially fluctuating media and multiple scattering systems and is based on the polarization but not on the signal amplitude. We suggest that it can be used as a non invasive testing method.
Fichier principal
Vignette du fichier
RANL-8VUCN2.pdf (352.77 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01075284 , version 1 (04-10-2021)

Identifiants

Citer

Jérémie Boulanger, Nicolas Le Bihan, Vincent Rossetto. Stochastic description of geometric phase for polarized waves in random media. Journal of Physics A: Mathematical and Theoretical, 2013, 46, pp.035203. ⟨10.1088/1751-8113/46/3/035203⟩. ⟨hal-01075284⟩
339 Consultations
46 Téléchargements

Altmetric

Partager

More