Sol-gel route toward efficient and robust Distributed Bragg Reflector for light management applications - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Advanced Optical Materials Année : 2014

Sol-gel route toward efficient and robust Distributed Bragg Reflector for light management applications

Résumé

The optimization of functional optical devices requires the appropriate control of light propagation, which can be achieved by using engineered dielectric structures. Innovative materials combination and fabrication strategies are required to achieve a robust gain in performance without impacting manufacturing complexity and cost. In the present work, a novel liquid-based approach is proposed for the simple and scalable fabrication of highly effi - cient and robust optical multilayer dielectric coatings. In particular, a sol-gel process is developed that enables the fabrication of large-area distributed Bragg refl ectors (DBR) integrating macroporous materials of controlled closed porosity. The DBRs have a very high index contrast, excellent and tunable optical properties, and high stability of performance and structural integrity with respect to crack formation and delamination, even against harsh ageing tests or solvent exposure. The potential of this approach to be integrated within existing optoelectronic architectures is demonstrated through the integration of a DBR structure as a back refl ector in an amorphous silicon solar cell (a-Si:H), resulting in a signifi cant increase in light absorption, photocurrent, and overall effi ciency. This opens the way towards simple dielectric engineering of robust photoactive devices based on the versatile use of liquid routes for the deposition of structured dielectric coatings.
Fichier non déposé

Dates et versions

hal-01071584 , version 1 (06-10-2014)

Identifiants

Citer

Barbara Brudieu, Arthur Le Bris, Jérémie Teisseire, François Guillemot, Géraldine Dantelle, et al.. Sol-gel route toward efficient and robust Distributed Bragg Reflector for light management applications. Advanced Optical Materials, 2014, ⟨10.1002/adom.201400292⟩. ⟨hal-01071584⟩
155 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More