Exponential bounds for the support convergence in the Single Ring Theorem - Archive ouverte HAL
Article Dans Une Revue Journal of Functional Analysis Année : 2015

Exponential bounds for the support convergence in the Single Ring Theorem

Résumé

We consider an $n$ by $n$ matrix of the form $A=UTV$, with $U, V$ some independent Haar-distributed unitary matrices and $T$ a deterministic matrix. We prove that for $k\sim n^{1/6}$ and $b:=\frac{1}{n}\operatorname{Tr}(|T|^2)$, as $n$ tends to infinity, we have $$\mathbb{E} \operatorname{Tr} (A^{k}(A^{k})^*) \ \lesssim \ b^{2k}\qquad \textrm{ and } \qquad\mathbb{E}[|\operatorname{Tr} (A^{k})|^2] \ \lesssim \ b^{2k}.$$ This gives a simple proof of the convergence of the support in the Single Ring Theorem, improves the available error bound for this convergence from $n^{-\alpha}$ to $e^{-cn^{1/6}}$ and proves that the rate of this convergence is at most $n^{-1/6}\log n$.

Dates et versions

hal-01069221 , version 1 (29-09-2014)

Identifiants

Citer

Florent Benaych-Georges. Exponential bounds for the support convergence in the Single Ring Theorem. Journal of Functional Analysis, 2015, 268 (11), pp.3492-3507. ⟨10.1016/j.jfa.2015.03.005⟩. ⟨hal-01069221⟩
400 Consultations
0 Téléchargements

Altmetric

Partager

More